A generalization of Alexander's Torus theorem to higher dimensions and an unknotting theorem for "S POT. P" x "S POT. Q" embedded in "S POT. P+Q+2" (1996)
- Authors:
- Autor USP: MANZOLI NETO, OZIRIDE - ICMC
- Unidade: ICMC
- Assunto: TOPOLOGIA
- Language: Inglês
- Source:
- Título: Kobe Journal of Mathematics
- Volume/Número/Paginação/Ano: v. 13, n. 2, p. 145-165, 1996
-
ABNT
LUCAS, Laércio Aparecido e MANZOLI NETO, Oziride e SAEKI, Osamu. A generalization of Alexander's Torus theorem to higher dimensions and an unknotting theorem for "S POT. P" x "S POT. Q" embedded in "S POT. P+Q+2". Kobe Journal of Mathematics, v. 13, n. 2, p. 145-165, 1996Tradução . . Acesso em: 28 jan. 2026. -
APA
Lucas, L. A., Manzoli Neto, O., & Saeki, O. (1996). A generalization of Alexander's Torus theorem to higher dimensions and an unknotting theorem for "S POT. P" x "S POT. Q" embedded in "S POT. P+Q+2". Kobe Journal of Mathematics, 13( 2), 145-165. -
NLM
Lucas LA, Manzoli Neto O, Saeki O. A generalization of Alexander's Torus theorem to higher dimensions and an unknotting theorem for "S POT. P" x "S POT. Q" embedded in "S POT. P+Q+2". Kobe Journal of Mathematics. 1996 ; 13( 2): 145-165.[citado 2026 jan. 28 ] -
Vancouver
Lucas LA, Manzoli Neto O, Saeki O. A generalization of Alexander's Torus theorem to higher dimensions and an unknotting theorem for "S POT. P" x "S POT. Q" embedded in "S POT. P+Q+2". Kobe Journal of Mathematics. 1996 ; 13( 2): 145-165.[citado 2026 jan. 28 ] - On handle theory for Morse-Bott critical manifolds
- Invariantes para mergulhos de superficies orientaveis em S^4
- Total linking number modules
- Alexander modules of satellite manifolds
- Minimal Nielsen root classes and roots of liftings
- Isolating blocks for periodic orbits
- Cancellations for circle-valued Morse functions via spectral sequences
- Smale flows on 'S POT.2' x 'S POT.1'
- Special maps from surfaces to 'S POT.2' 'OU' 'S POT.1'
- Fundamental domain and cellular decomposition of tetrahedral spherical space forms
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
