Filtros : "Kelbert, Mark" Limpar

Filtros



Refine with date range


  • Source: Brazilian Journal of Probability and Statistics. Unidade: IME

    Subjects: MECÂNICA QUÂNTICA, MECÂNICA ESTATÍSTICA, PROCESSOS ESTOCÁSTICOS, GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KELBERT, Mark e SUHOV, Yu. M e IAMBARTSEV, Anatoli. A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins. Brazilian Journal of Probability and Statistics, v. 28, n. 4, p. 515-537, 2014Tradução . . Disponível em: https://doi.org/10.1214/13-BJPS222. Acesso em: 18 nov. 2024.
    • APA

      Kelbert, M., Suhov, Y. M., & Iambartsev, A. (2014). A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins. Brazilian Journal of Probability and Statistics, 28( 4), 515-537. doi:10.1214/13-BJPS222
    • NLM

      Kelbert M, Suhov YM, Iambartsev A. A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins [Internet]. Brazilian Journal of Probability and Statistics. 2014 ; 28( 4): 515-537.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1214/13-BJPS222
    • Vancouver

      Kelbert M, Suhov YM, Iambartsev A. A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins [Internet]. Brazilian Journal of Probability and Statistics. 2014 ; 28( 4): 515-537.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1214/13-BJPS222
  • Source: Mathematical Communications. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS PONTUAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KELBERT, Mark e LEONENKO, Nikolai e BELITSKY, Vladimir. On the Bartlett spectrum of randomized Hawkes processes. Mathematical Communications, v. 18, n. 2, p. 393-407, 2013Tradução . . Disponível em: http://www.mathos.unios.hr/mc/index.php/mc/article/view/83/100. Acesso em: 18 nov. 2024.
    • APA

      Kelbert, M., Leonenko, N., & Belitsky, V. (2013). On the Bartlett spectrum of randomized Hawkes processes. Mathematical Communications, 18( 2), 393-407. Recuperado de http://www.mathos.unios.hr/mc/index.php/mc/article/view/83/100
    • NLM

      Kelbert M, Leonenko N, Belitsky V. On the Bartlett spectrum of randomized Hawkes processes [Internet]. Mathematical Communications. 2013 ; 18( 2): 393-407.[citado 2024 nov. 18 ] Available from: http://www.mathos.unios.hr/mc/index.php/mc/article/view/83/100
    • Vancouver

      Kelbert M, Leonenko N, Belitsky V. On the Bartlett spectrum of randomized Hawkes processes [Internet]. Mathematical Communications. 2013 ; 18( 2): 393-407.[citado 2024 nov. 18 ] Available from: http://www.mathos.unios.hr/mc/index.php/mc/article/view/83/100

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024