Fonte: Frontiers in Plant Science. Unidades: CENA, ESALQ
Assuntos: AMENDOIM, ANÁLISE ESPECTRAL, APRENDIZADO COMPUTACIONAL, FLUORESCÊNCIA, INTELIGÊNCIA ARTIFICIAL, SEMENTES
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
OLIVEIRA, Gustavo Roberto Fonseca de et al. An approach using emerging optical technologies and artificial intelligence brings new markers to evaluate peanut seed quality. Frontiers in Plant Science, v. 13, p. 1-18, 2022Tradução . . Disponível em: https://doi.org/10.3389/fpls.2022.849986. Acesso em: 01 nov. 2024.APA
Oliveira, G. R. F. de, Mastrangelo, C. B., Hirai, W. Y., Batista, T. B., Sudki, J. M., Petronilio, A. C. P., et al. (2022). An approach using emerging optical technologies and artificial intelligence brings new markers to evaluate peanut seed quality. Frontiers in Plant Science, 13, 1-18. doi:10.3389/fpls.2022.849986NLM
Oliveira GRF de, Mastrangelo CB, Hirai WY, Batista TB, Sudki JM, Petronilio ACP, Crusciol CAC, Silva EAA da. An approach using emerging optical technologies and artificial intelligence brings new markers to evaluate peanut seed quality [Internet]. Frontiers in Plant Science. 2022 ; 13 1-18.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3389/fpls.2022.849986Vancouver
Oliveira GRF de, Mastrangelo CB, Hirai WY, Batista TB, Sudki JM, Petronilio ACP, Crusciol CAC, Silva EAA da. An approach using emerging optical technologies and artificial intelligence brings new markers to evaluate peanut seed quality [Internet]. Frontiers in Plant Science. 2022 ; 13 1-18.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3389/fpls.2022.849986