Fonte: Chemosphere. Unidade: IQSC
Assuntos: INTELIGÊNCIA ARTIFICIAL, REDES NEURAIS, ANTIBIÓTICOS
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
GUL, Saima et al. Integrated AI-driven optimization of Fenton process for the treatment of antibiotic sulfamethoxazole: Insights into mechanistic approach. Chemosphere, v. 357, p. 141868, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.chemosphere.2024.141868. Acesso em: 01 nov. 2024.APA
Gul, S., Hussain, S., Khan, H., Arshad, M., Khan, J. R., & Motheo, A. de J. (2024). Integrated AI-driven optimization of Fenton process for the treatment of antibiotic sulfamethoxazole: Insights into mechanistic approach. Chemosphere, 357, 141868. doi:10.1016/j.chemosphere.2024.141868NLM
Gul S, Hussain S, Khan H, Arshad M, Khan JR, Motheo A de J. Integrated AI-driven optimization of Fenton process for the treatment of antibiotic sulfamethoxazole: Insights into mechanistic approach [Internet]. Chemosphere. 2024 ; 357 141868.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.chemosphere.2024.141868Vancouver
Gul S, Hussain S, Khan H, Arshad M, Khan JR, Motheo A de J. Integrated AI-driven optimization of Fenton process for the treatment of antibiotic sulfamethoxazole: Insights into mechanistic approach [Internet]. Chemosphere. 2024 ; 357 141868.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.chemosphere.2024.141868