Filtros : "Gonçalves, Jairo Zacarias" "2015" Removido: "Estados Unidos" Limpar

Filtros



Refine with date range


  • Unidade: IME

    Subjects: ÁLGEBRA, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS COM DIVISÃO

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Pedro Russo de. O teorema de Amitsur para identidades racionais em anéis com divisão. 2015. Dissertação (Mestrado) – Universidade de São Paulo, São Paulo, 2015. Disponível em: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15072015-143422. Acesso em: 03 nov. 2024.
    • APA

      Oliveira, P. R. de. (2015). O teorema de Amitsur para identidades racionais em anéis com divisão (Dissertação (Mestrado). Universidade de São Paulo, São Paulo. Recuperado de http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15072015-143422
    • NLM

      Oliveira PR de. O teorema de Amitsur para identidades racionais em anéis com divisão [Internet]. 2015 ;[citado 2024 nov. 03 ] Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15072015-143422
    • Vancouver

      Oliveira PR de. O teorema de Amitsur para identidades racionais em anéis com divisão [Internet]. 2015 ;[citado 2024 nov. 03 ] Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15072015-143422
  • Source: Israel Journal of Mathematics. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS COM DIVISÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Vitor de Oliveira e GONÇALVES, Jairo Zacarias. Free symmetric and unitary pairs in division rings infinite-dimensional over their centers. Israel Journal of Mathematics, v. 210, n. 1, p. 297-321, 2015Tradução . . Disponível em: https://doi.org/10.1007/s11856-015-1253-x. Acesso em: 03 nov. 2024.
    • APA

      Ferreira, V. de O., & Gonçalves, J. Z. (2015). Free symmetric and unitary pairs in division rings infinite-dimensional over their centers. Israel Journal of Mathematics, 210( 1), 297-321. doi:10.1007/s11856-015-1253-x
    • NLM

      Ferreira V de O, Gonçalves JZ. Free symmetric and unitary pairs in division rings infinite-dimensional over their centers [Internet]. Israel Journal of Mathematics. 2015 ; 210( 1): 297-321.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s11856-015-1253-x
    • Vancouver

      Ferreira V de O, Gonçalves JZ. Free symmetric and unitary pairs in division rings infinite-dimensional over their centers [Internet]. Israel Journal of Mathematics. 2015 ; 210( 1): 297-321.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s11856-015-1253-x
  • Source: International Journal of Algebra and Computation. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS COM DIVISÃO, ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Vitor de Oliveira e GONÇALVES, Jairo Zacarias e SÁNCHEZ, Javier. Free symmetric algebras in division rings generated by enveloping algebras of Lie algebras. International Journal of Algebra and Computation, v. 25, n. 6, p. 1075-1106, 2015Tradução . . Disponível em: https://doi.org/10.1142/S0218196715500319. Acesso em: 03 nov. 2024.
    • APA

      Ferreira, V. de O., Gonçalves, J. Z., & Sánchez, J. (2015). Free symmetric algebras in division rings generated by enveloping algebras of Lie algebras. International Journal of Algebra and Computation, 25( 6), 1075-1106. doi:10.1142/S0218196715500319
    • NLM

      Ferreira V de O, Gonçalves JZ, Sánchez J. Free symmetric algebras in division rings generated by enveloping algebras of Lie algebras [Internet]. International Journal of Algebra and Computation. 2015 ; 25( 6): 1075-1106.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1142/S0218196715500319
    • Vancouver

      Ferreira V de O, Gonçalves JZ, Sánchez J. Free symmetric algebras in division rings generated by enveloping algebras of Lie algebras [Internet]. International Journal of Algebra and Computation. 2015 ; 25( 6): 1075-1106.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1142/S0218196715500319

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024