Filtros : "Carvalho, André Carlos Ponce de Leon Ferreira de" "Intelligent Data Analysis" Removidos: "Indexado no: BDENF" "FCF001" "Universidade Nove de Julho, São Paulo, Brasil" "World Scientific" Limpar

Filtros



Refine with date range


  • Source: Intelligent Data Analysis. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, ALGORITMOS PARA PROCESSAMENTO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA, Luís Paulo Faina et al. Boosting meta-learning with simulated data complexity measures. Intelligent Data Analysis, v. 24, n. 5, p. 1011-1028, 2020Tradução . . Disponível em: https://doi.org/10.3233/IDA-194803. Acesso em: 03 jul. 2024.
    • APA

      Garcia, L. P. F., Rivolli, A., Alcobaça, E., Lorena, A. C., & Carvalho, A. C. P. de L. F. de. (2020). Boosting meta-learning with simulated data complexity measures. Intelligent Data Analysis, 24( 5), 1011-1028. doi:10.3233/IDA-194803
    • NLM

      Garcia LPF, Rivolli A, Alcobaça E, Lorena AC, Carvalho ACP de LF de. Boosting meta-learning with simulated data complexity measures [Internet]. Intelligent Data Analysis. 2020 ; 24( 5): 1011-1028.[citado 2024 jul. 03 ] Available from: https://doi.org/10.3233/IDA-194803
    • Vancouver

      Garcia LPF, Rivolli A, Alcobaça E, Lorena AC, Carvalho ACP de LF de. Boosting meta-learning with simulated data complexity measures [Internet]. Intelligent Data Analysis. 2020 ; 24( 5): 1011-1028.[citado 2024 jul. 03 ] Available from: https://doi.org/10.3233/IDA-194803
  • Source: Intelligent Data Analysis. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, ANÁLISE DE SÉRIES TEMPORAIS, MINERAÇÃO DE DADOS, ALGORITMOS ÚTEIS E ESPECÍFICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VERDECIA-CABRERA, Alberto e BLANCO, Isvani Frías e CARVALHO, André Carlos Ponce de Leon Ferreira de. An online adaptive classifier ensemble for mining non-stationary data streams. Intelligent Data Analysis, v. 22, n. 4, p. 787-806, 2018Tradução . . Disponível em: https://doi.org/10.3233/IDA-173522. Acesso em: 03 jul. 2024.
    • APA

      Verdecia-Cabrera, A., Blanco, I. F., & Carvalho, A. C. P. de L. F. de. (2018). An online adaptive classifier ensemble for mining non-stationary data streams. Intelligent Data Analysis, 22( 4), 787-806. doi:10.3233/IDA-173522
    • NLM

      Verdecia-Cabrera A, Blanco IF, Carvalho ACP de LF de. An online adaptive classifier ensemble for mining non-stationary data streams [Internet]. Intelligent Data Analysis. 2018 ; 22( 4): 787-806.[citado 2024 jul. 03 ] Available from: https://doi.org/10.3233/IDA-173522
    • Vancouver

      Verdecia-Cabrera A, Blanco IF, Carvalho ACP de LF de. An online adaptive classifier ensemble for mining non-stationary data streams [Internet]. Intelligent Data Analysis. 2018 ; 22( 4): 787-806.[citado 2024 jul. 03 ] Available from: https://doi.org/10.3233/IDA-173522
  • Source: Intelligent Data Analysis. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, COMPUTAÇÃO MÓVEL, BIOMETRIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PISANI, Paulo Henrique e LORENA, Ana Carolina e CARVALHO, André Carlos Ponce de Leon Ferreira de. Adaptive algorithms applied to accelerometer biometrics in a data stream context. Intelligent Data Analysis, v. 21, n. 2, p. 353-370, 2017Tradução . . Disponível em: https://doi.org/10.3233/IDA-150403. Acesso em: 03 jul. 2024.
    • APA

      Pisani, P. H., Lorena, A. C., & Carvalho, A. C. P. de L. F. de. (2017). Adaptive algorithms applied to accelerometer biometrics in a data stream context. Intelligent Data Analysis, 21( 2), 353-370. doi:10.3233/IDA-150403
    • NLM

      Pisani PH, Lorena AC, Carvalho ACP de LF de. Adaptive algorithms applied to accelerometer biometrics in a data stream context [Internet]. Intelligent Data Analysis. 2017 ; 21( 2): 353-370.[citado 2024 jul. 03 ] Available from: https://doi.org/10.3233/IDA-150403
    • Vancouver

      Pisani PH, Lorena AC, Carvalho ACP de LF de. Adaptive algorithms applied to accelerometer biometrics in a data stream context [Internet]. Intelligent Data Analysis. 2017 ; 21( 2): 353-370.[citado 2024 jul. 03 ] Available from: https://doi.org/10.3233/IDA-150403
  • Source: Intelligent Data Analysis. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, ANÁLISE DE SÉRIES TEMPORAIS, ALGORITMOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROSSI, André Luis Debiaso et al. A guidance of data stream characterization for meta-learning. Intelligent Data Analysis, v. 21, n. 4, p. 1015-1035, 2017Tradução . . Disponível em: https://doi.org/10.3233/IDA-160083. Acesso em: 03 jul. 2024.
    • APA

      Rossi, A. L. D., Souza, B. F. de, Soares, C., & Carvalho, A. C. P. de L. F. de. (2017). A guidance of data stream characterization for meta-learning. Intelligent Data Analysis, 21( 4), 1015-1035. doi:10.3233/IDA-160083
    • NLM

      Rossi ALD, Souza BF de, Soares C, Carvalho ACP de LF de. A guidance of data stream characterization for meta-learning [Internet]. Intelligent Data Analysis. 2017 ; 21( 4): 1015-1035.[citado 2024 jul. 03 ] Available from: https://doi.org/10.3233/IDA-160083
    • Vancouver

      Rossi ALD, Souza BF de, Soares C, Carvalho ACP de LF de. A guidance of data stream characterization for meta-learning [Internet]. Intelligent Data Analysis. 2017 ; 21( 4): 1015-1035.[citado 2024 jul. 03 ] Available from: https://doi.org/10.3233/IDA-160083
  • Source: Intelligent Data Analysis. Unidade: ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, PROGRAMAÇÃO CONCORRENTE, SISTEMAS DISTRIBUÍDOS, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VALLIM, Rosane M. M et al. Unsupervised density-based behavior change detection in data streams. Intelligent Data Analysis, v. 18, n. 2, p. 181-201, 2014Tradução . . Disponível em: https://doi.org/10.3233/IDA-140636. Acesso em: 03 jul. 2024.
    • APA

      Vallim, R. M. M., Andrade Filho, J. A., Mello, R. F. de, Carvalho, A. C. P. de L. F. de, & Gama, J. (2014). Unsupervised density-based behavior change detection in data streams. Intelligent Data Analysis, 18( 2), 181-201. doi:10.3233/IDA-140636
    • NLM

      Vallim RMM, Andrade Filho JA, Mello RF de, Carvalho ACP de LF de, Gama J. Unsupervised density-based behavior change detection in data streams [Internet]. Intelligent Data Analysis. 2014 ; 18( 2): 181-201.[citado 2024 jul. 03 ] Available from: https://doi.org/10.3233/IDA-140636
    • Vancouver

      Vallim RMM, Andrade Filho JA, Mello RF de, Carvalho ACP de LF de, Gama J. Unsupervised density-based behavior change detection in data streams [Internet]. Intelligent Data Analysis. 2014 ; 18( 2): 181-201.[citado 2024 jul. 03 ] Available from: https://doi.org/10.3233/IDA-140636
  • Source: Intelligent Data Analysis. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CERRI, Ricardo e CARVALHO, André Carlos Ponce de Leon Ferreira de e FREITAS, Alex A. Adapting non-hierarchical multilabel classification methods for hierarchical multilabel classification. Intelligent Data Analysis, v. 15, p. 861-887, 2011Tradução . . Disponível em: https://doi.org/10.3233/IDA-2011-0500. Acesso em: 03 jul. 2024.
    • APA

      Cerri, R., Carvalho, A. C. P. de L. F. de, & Freitas, A. A. (2011). Adapting non-hierarchical multilabel classification methods for hierarchical multilabel classification. Intelligent Data Analysis, 15, 861-887. doi:10.3233/IDA-2011-0500
    • NLM

      Cerri R, Carvalho ACP de LF de, Freitas AA. Adapting non-hierarchical multilabel classification methods for hierarchical multilabel classification [Internet]. Intelligent Data Analysis. 2011 ; 15 861-887.[citado 2024 jul. 03 ] Available from: https://doi.org/10.3233/IDA-2011-0500
    • Vancouver

      Cerri R, Carvalho ACP de LF de, Freitas AA. Adapting non-hierarchical multilabel classification methods for hierarchical multilabel classification [Internet]. Intelligent Data Analysis. 2011 ; 15 861-887.[citado 2024 jul. 03 ] Available from: https://doi.org/10.3233/IDA-2011-0500
  • Source: Intelligent Data Analysis. Unidade: ICMC

    Assunto: INTELIGÊNCIA ARTIFICIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARDOSO, Margarida G. M. S e CARVALHO, André Carlos Ponce de Leon Ferreira de. Quality indices for (practical) clustering evaluation. Intelligent Data Analysis, v. 13, p. 725-740, 2009Tradução . . Disponível em: https://doi.org/10.3233/IDA-2009-0390. Acesso em: 03 jul. 2024.
    • APA

      Cardoso, M. G. M. S., & Carvalho, A. C. P. de L. F. de. (2009). Quality indices for (practical) clustering evaluation. Intelligent Data Analysis, 13, 725-740. doi:10.3233/IDA-2009-0390
    • NLM

      Cardoso MGMS, Carvalho ACP de LF de. Quality indices for (practical) clustering evaluation [Internet]. Intelligent Data Analysis. 2009 ; 13 725-740.[citado 2024 jul. 03 ] Available from: https://doi.org/10.3233/IDA-2009-0390
    • Vancouver

      Cardoso MGMS, Carvalho ACP de LF de. Quality indices for (practical) clustering evaluation [Internet]. Intelligent Data Analysis. 2009 ; 13 725-740.[citado 2024 jul. 03 ] Available from: https://doi.org/10.3233/IDA-2009-0390

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024