Boosting meta-learning with simulated data complexity measures (2020)
- Authors:
- USP affiliated authors: CARVALHO, ANDRÉ CARLOS PONCE DE LEON FERREIRA DE - ICMC ; ALCOBAÇA NETO, EDESIO PINTO DE SOUZA - ICMC
- Unidade: ICMC
- DOI: 10.3233/IDA-194803
- Subjects: APRENDIZADO COMPUTACIONAL; ALGORITMOS PARA PROCESSAMENTO
- Keywords: Meta-learning; meta-features; complexity measures
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Intelligent Data Analysis
- ISSN: 1088-467X
- Volume/Número/Paginação/Ano: v. 24, n. 5, p. 1011-1028, 2020
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
GARCIA, Luís Paulo Faina et al. Boosting meta-learning with simulated data complexity measures. Intelligent Data Analysis, v. 24, n. 5, p. 1011-1028, 2020Tradução . . Disponível em: https://doi.org/10.3233/IDA-194803. Acesso em: 28 dez. 2025. -
APA
Garcia, L. P. F., Rivolli, A., Alcobaça, E., Lorena, A. C., & Carvalho, A. C. P. de L. F. de. (2020). Boosting meta-learning with simulated data complexity measures. Intelligent Data Analysis, 24( 5), 1011-1028. doi:10.3233/IDA-194803 -
NLM
Garcia LPF, Rivolli A, Alcobaça E, Lorena AC, Carvalho ACP de LF de. Boosting meta-learning with simulated data complexity measures [Internet]. Intelligent Data Analysis. 2020 ; 24( 5): 1011-1028.[citado 2025 dez. 28 ] Available from: https://doi.org/10.3233/IDA-194803 -
Vancouver
Garcia LPF, Rivolli A, Alcobaça E, Lorena AC, Carvalho ACP de LF de. Boosting meta-learning with simulated data complexity measures [Internet]. Intelligent Data Analysis. 2020 ; 24( 5): 1011-1028.[citado 2025 dez. 28 ] Available from: https://doi.org/10.3233/IDA-194803 - Lessons learned from the NeurIPS 2021 MetaDL challenge: backbone fine-tuning without episodic meta-learning dominates for few-shot learning image classification
- A literature review on automated machine learning
- MFE: towards reproducible meta-feature extraction
- Machine learning unveils composition-property relationships in chalcogenide glasses
- Predicting and interpreting oxide glass properties by machine learning using large datasets
- Explainable machine learning algorithms for predicting glass transition temperatures
- Reduction strategies for hierarchical multi-label classification in protein function prediction
- Intelligent-guided adaptive search for the maximum covering location problem
- Clus-DTI: improving decision-tree classification with a clustering-based decision-tree induction algorithm
- A density-based clustering approach for behavior change detection in data streams
Informações sobre o DOI: 10.3233/IDA-194803 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3011249.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
