Lessons learned from the NeurIPS 2021 MetaDL challenge: backbone fine-tuning without episodic meta-learning dominates for few-shot learning image classification (2022)
- Authors:
- USP affiliated authors: CARVALHO, ANDRÉ CARLOS PONCE DE LEON FERREIRA DE - ICMC ; ALCOBAÇA NETO, EDESIO PINTO DE SOUZA - ICMC
- Unidade: ICMC
- Assunto: APRENDIZADO COMPUTACIONAL
- Keywords: Automated Machine Learning; meta-learning; competition
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: Microtome Publishing
- Publisher place: Brookline
- Date published: 2022
- Source:
- Título: Proceedings of Machine Learning Research : PMLR
- ISSN: 1938-7228
- Volume/Número/Paginação/Ano: v. 176, p. 80-96, 2022
- Conference titles: Conference on Neural Information Processing Systems - NeurIPS
-
ABNT
BAZ, Adrian El et al. Lessons learned from the NeurIPS 2021 MetaDL challenge: backbone fine-tuning without episodic meta-learning dominates for few-shot learning image classification. Proceedings of Machine Learning Research : PMLR. Brookline: Microtome Publishing. Disponível em: https://proceedings.mlr.press/v176/el-baz22a.html. Acesso em: 27 dez. 2025. , 2022 -
APA
Baz, A. E., Ullah, I., Alcobaça, E., Carvalho, A. C. P. de L. F. de, Chen, H., Ferreira, F., et al. (2022). Lessons learned from the NeurIPS 2021 MetaDL challenge: backbone fine-tuning without episodic meta-learning dominates for few-shot learning image classification. Proceedings of Machine Learning Research : PMLR. Brookline: Microtome Publishing. Recuperado de https://proceedings.mlr.press/v176/el-baz22a.html -
NLM
Baz AE, Ullah I, Alcobaça E, Carvalho ACP de LF de, Chen H, Ferreira F, Gouk H, Guan C, Guyon I, Hospedales T, Hu S, Huisman M, Hutter F, Liu Z, Mohr F, Öztürk E, Rijn JN van, Sun H, Wang X, Zhu W. Lessons learned from the NeurIPS 2021 MetaDL challenge: backbone fine-tuning without episodic meta-learning dominates for few-shot learning image classification [Internet]. Proceedings of Machine Learning Research : PMLR. 2022 ; 176 80-96.[citado 2025 dez. 27 ] Available from: https://proceedings.mlr.press/v176/el-baz22a.html -
Vancouver
Baz AE, Ullah I, Alcobaça E, Carvalho ACP de LF de, Chen H, Ferreira F, Gouk H, Guan C, Guyon I, Hospedales T, Hu S, Huisman M, Hutter F, Liu Z, Mohr F, Öztürk E, Rijn JN van, Sun H, Wang X, Zhu W. Lessons learned from the NeurIPS 2021 MetaDL challenge: backbone fine-tuning without episodic meta-learning dominates for few-shot learning image classification [Internet]. Proceedings of Machine Learning Research : PMLR. 2022 ; 176 80-96.[citado 2025 dez. 27 ] Available from: https://proceedings.mlr.press/v176/el-baz22a.html - A literature review on automated machine learning
- Boosting meta-learning with simulated data complexity measures
- MFE: towards reproducible meta-feature extraction
- Machine learning unveils composition-property relationships in chalcogenide glasses
- Predicting and interpreting oxide glass properties by machine learning using large datasets
- Explainable machine learning algorithms for predicting glass transition temperatures
- Reduction strategies for hierarchical multi-label classification in protein function prediction
- Intelligent-guided adaptive search for the maximum covering location problem
- Clus-DTI: improving decision-tree classification with a clustering-based decision-tree induction algorithm
- A density-based clustering approach for behavior change detection in data streams
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3090923.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
