Filtros : "Carvalho, Alexandre Nolasco de" "Communications on Pure and Applied Analysis" Limpar

Filtros



Refine with date range


  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, ATRATORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e LANGA, José Antonio e ROBINSON, James C. Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor. Communications on Pure and Applied Analysis, v. 19, n. 4, p. 1997-2013, 2020Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2020088. Acesso em: 01 nov. 2024.
    • APA

      Carvalho, A. N. de, Langa, J. A., & Robinson, J. C. (2020). Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor. Communications on Pure and Applied Analysis, 19( 4), 1997-2013. doi:10.3934/cpaa.2020088
    • NLM

      Carvalho AN de, Langa JA, Robinson JC. Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 1997-2013.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2020088
    • Vancouver

      Carvalho AN de, Langa JA, Robinson JC. Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 1997-2013.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2020088
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LI, Yanan et al. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation. Communications on Pure and Applied Analysis, v. No 2020, n. 11, p. 5181-5196, 2020Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2020232. Acesso em: 01 nov. 2024.
    • APA

      Li, Y., Carvalho, A. N. de, Luna, T. L. M., & Moreira, E. M. (2020). A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation. Communications on Pure and Applied Analysis, No 2020( 11), 5181-5196. doi:10.3934/cpaa.2020232
    • NLM

      Li Y, Carvalho AN de, Luna TLM, Moreira EM. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation [Internet]. Communications on Pure and Applied Analysis. 2020 ; No 2020( 11): 5181-5196.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2020232
    • Vancouver

      Li Y, Carvalho AN de, Luna TLM, Moreira EM. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation [Internet]. Communications on Pure and Applied Analysis. 2020 ; No 2020( 11): 5181-5196.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2020232
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e SONNER, Stefanie. Pullback exponential attractors for evolution processes in Banach spaces: properties and applications. Communications on Pure and Applied Analysis, v. 13, n. 3, p. 1141-1165, 2014Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2014.13.1141. Acesso em: 01 nov. 2024.
    • APA

      Carvalho, A. N. de, & Sonner, S. (2014). Pullback exponential attractors for evolution processes in Banach spaces: properties and applications. Communications on Pure and Applied Analysis, 13( 3), 1141-1165. doi:10.3934/cpaa.2014.13.1141
    • NLM

      Carvalho AN de, Sonner S. Pullback exponential attractors for evolution processes in Banach spaces: properties and applications [Internet]. Communications on Pure and Applied Analysis. 2014 ; 13( 3): 1141-1165.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2014.13.1141
    • Vancouver

      Carvalho AN de, Sonner S. Pullback exponential attractors for evolution processes in Banach spaces: properties and applications [Internet]. Communications on Pure and Applied Analysis. 2014 ; 13( 3): 1141-1165.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2014.13.1141
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e SONNER, Stefanie. Pullback exponential attractors for evolution processes in Banach spaces: theoretical results. Communications on Pure and Applied Analysis, v. 12, n. 6, p. 3047-3071, 2013Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2013.12.3047. Acesso em: 01 nov. 2024.
    • APA

      Carvalho, A. N. de, & Sonner, S. (2013). Pullback exponential attractors for evolution processes in Banach spaces: theoretical results. Communications on Pure and Applied Analysis, 12( 6), 3047-3071. doi:10.3934/cpaa.2013.12.3047
    • NLM

      Carvalho AN de, Sonner S. Pullback exponential attractors for evolution processes in Banach spaces: theoretical results [Internet]. Communications on Pure and Applied Analysis. 2013 ; 12( 6): 3047-3071.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2013.12.3047
    • Vancouver

      Carvalho AN de, Sonner S. Pullback exponential attractors for evolution processes in Banach spaces: theoretical results [Internet]. Communications on Pure and Applied Analysis. 2013 ; 12( 6): 3047-3071.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2013.12.3047
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e PRIMO, Marcos Roberto Teixeira. Spatial homogeneity in parabolic problems with nonlinear boundary conditions. Communications on Pure and Applied Analysis, v. 3, n. 4, p. 637-651, 2004Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2004.3.637. Acesso em: 01 nov. 2024.
    • APA

      Carvalho, A. N. de, & Primo, M. R. T. (2004). Spatial homogeneity in parabolic problems with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 3( 4), 637-651. doi:10.3934/cpaa.2004.3.637
    • NLM

      Carvalho AN de, Primo MRT. Spatial homogeneity in parabolic problems with nonlinear boundary conditions [Internet]. Communications on Pure and Applied Analysis. 2004 ; 3( 4): 637-651.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2004.3.637
    • Vancouver

      Carvalho AN de, Primo MRT. Spatial homogeneity in parabolic problems with nonlinear boundary conditions [Internet]. Communications on Pure and Applied Analysis. 2004 ; 3( 4): 637-651.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2004.3.637

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024