Filtros : "Université de Montréal" "ICMC" Removidos: "Indexado no PubMed" "MATEMÁTICA APLICADA E ESTATÍSTICA" "1976" "Book of Abstracts" "Springer-Verlag" Limpar

Filtros



Refine with date range


  • Unidade: ICMC

    Subjects: INVARIANTES, SISTEMAS DIFERENCIAIS, SINGULARIDADES

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Configurations of quadratic systems possessing three distinct infinite singularities and invariant parabolas. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/item/003189042. Acesso em: 04 nov. 2024. , 2024
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2024). Configurations of quadratic systems possessing three distinct infinite singularities and invariant parabolas. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/item/003189042
    • NLM

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Configurations of quadratic systems possessing three distinct infinite singularities and invariant parabolas [Internet]. 2024 ;[citado 2024 nov. 04 ] Available from: https://repositorio.usp.br/item/003189042
    • Vancouver

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Configurations of quadratic systems possessing three distinct infinite singularities and invariant parabolas [Internet]. 2024 ;[citado 2024 nov. 04 ] Available from: https://repositorio.usp.br/item/003189042
  • Source: Revista Matemática Complutense. Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, TEORIA QUALITATIVA, INVARIANTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials. Revista Matemática Complutense, v. 35, n. 2, p. 361-413, 2022Tradução . . Disponível em: https://doi.org/10.1007/s13163-021-00398-8. Acesso em: 04 nov. 2024.
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2022). Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials. Revista Matemática Complutense, 35( 2), 361-413. doi:10.1007/s13163-021-00398-8
    • NLM

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials [Internet]. Revista Matemática Complutense. 2022 ; 35( 2): 361-413.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s13163-021-00398-8
    • Vancouver

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials [Internet]. Revista Matemática Complutense. 2022 ; 35( 2): 361-413.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s13163-021-00398-8
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, INVARIANTES, TEORIA DA BIFURCAÇÃO, SISTEMAS DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOTA, Marcos Coutinho et al. Geometric analysis of quadratic differential systems with invariant ellipses. Topological Methods in Nonlinear Analysis, v. 59, n. 2A, p. 623-685, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2021.063. Acesso em: 04 nov. 2024.
    • APA

      Mota, M. C., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2022). Geometric analysis of quadratic differential systems with invariant ellipses. Topological Methods in Nonlinear Analysis, 59( 2A), 623-685. doi:10.12775/TMNA.2021.063
    • NLM

      Mota MC, Rezende AC, Schlomiuk D, Vulpe N. Geometric analysis of quadratic differential systems with invariant ellipses [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 59( 2A): 623-685.[citado 2024 nov. 04 ] Available from: https://doi.org/10.12775/TMNA.2021.063
    • Vancouver

      Mota MC, Rezende AC, Schlomiuk D, Vulpe N. Geometric analysis of quadratic differential systems with invariant ellipses [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 59( 2A): 623-685.[citado 2024 nov. 04 ] Available from: https://doi.org/10.12775/TMNA.2021.063
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, INVARIANTES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability. Electronic Journal of Qualitative Theory of Differential Equations, v. 2021, n. 45, p. 1-90, 2021Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2021.1.45. Acesso em: 04 nov. 2024.
    • APA

      Oliveira, R. D. dos S., Schlomiuk, D., Travaglini, A. M., & Valls, C. (2021). Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability. Electronic Journal of Qualitative Theory of Differential Equations, 2021( 45), 1-90. doi:10.14232/ejqtde.2021.1.45
    • NLM

      Oliveira RD dos S, Schlomiuk D, Travaglini AM, Valls C. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 45): 1-90.[citado 2024 nov. 04 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.45
    • Vancouver

      Oliveira RD dos S, Schlomiuk D, Travaglini AM, Valls C. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 45): 1-90.[citado 2024 nov. 04 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.45
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e SCHLOMIUK, Dana e TRAVAGLINI, Ana Maria. Geometry and integrability of quadratic systems with invariant hyperbolas. Electronic Journal of Qualitative Theory of Differential Equations, v. 2021, n. 6, p. 1-56, 2021Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2021.1.6. Acesso em: 04 nov. 2024.
    • APA

      Oliveira, R. D. dos S., Schlomiuk, D., & Travaglini, A. M. (2021). Geometry and integrability of quadratic systems with invariant hyperbolas. Electronic Journal of Qualitative Theory of Differential Equations, 2021( 6), 1-56. doi:10.14232/ejqtde.2021.1.6
    • NLM

      Oliveira RD dos S, Schlomiuk D, Travaglini AM. Geometry and integrability of quadratic systems with invariant hyperbolas [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 6): 1-56.[citado 2024 nov. 04 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.6
    • Vancouver

      Oliveira RD dos S, Schlomiuk D, Travaglini AM. Geometry and integrability of quadratic systems with invariant hyperbolas [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 6): 1-56.[citado 2024 nov. 04 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.6
  • Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, INVARIANTES

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOTA, Marcos Coutinho et al. Geometric analysis of quadratic differential systems with invariant ellipses. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/2845e217-374e-4bf0-a229-283b1ff03372/3005920.pdf. Acesso em: 04 nov. 2024. , 2019
    • APA

      Mota, M. C., Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2019). Geometric analysis of quadratic differential systems with invariant ellipses. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/2845e217-374e-4bf0-a229-283b1ff03372/3005920.pdf
    • NLM

      Mota MC, Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Geometric analysis of quadratic differential systems with invariant ellipses [Internet]. 2019 ;[citado 2024 nov. 04 ] Available from: https://repositorio.usp.br/directbitstream/2845e217-374e-4bf0-a229-283b1ff03372/3005920.pdf
    • Vancouver

      Mota MC, Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Geometric analysis of quadratic differential systems with invariant ellipses [Internet]. 2019 ;[citado 2024 nov. 04 ] Available from: https://repositorio.usp.br/directbitstream/2845e217-374e-4bf0-a229-283b1ff03372/3005920.pdf
  • Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, TEORIA DAS CATÁSTROFES, TEORIA QUALITATIVA, INVARIANTES

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Classification of the family of quadratic differential systems possessing invariant ellipses. . São Carlos: ICMC-USP. Disponível em: http://repositorio.icmc.usp.br//handle/RIICMC/6897. Acesso em: 04 nov. 2024. , 2019
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2019). Classification of the family of quadratic differential systems possessing invariant ellipses. São Carlos: ICMC-USP. Recuperado de http://repositorio.icmc.usp.br//handle/RIICMC/6897
    • NLM

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Classification of the family of quadratic differential systems possessing invariant ellipses [Internet]. 2019 ;[citado 2024 nov. 04 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6897
    • Vancouver

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Classification of the family of quadratic differential systems possessing invariant ellipses [Internet]. 2019 ;[citado 2024 nov. 04 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6897

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024