Source: Frontiers in Plant Science. Unidade: ESALQ
Subjects: GENÔMICA, HIBRIDAÇÃO VEGETAL, MELHORAMENTO GENÉTICO VEGETAL, MILHO, SELEÇÃO GENÉTICA
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
FRITSCHE NETO, Roberto et al. Optimizing genomic-enabled prediction in small-scale maize hHybrid breeding programs: a roadmap review. Frontiers in Plant Science, p. 1-16, 2021Tradução . . Disponível em: https://doi.org/10.3389/fpls.2021.658267. Acesso em: 03 nov. 2024.APA
Fritsche Neto, R., Galli, G., Borges, K. L. R., Costa Neto, G. M. F., Alves, F. C., Sabadin, F., et al. (2021). Optimizing genomic-enabled prediction in small-scale maize hHybrid breeding programs: a roadmap review. Frontiers in Plant Science, 1-16. doi:10.3389/fpls.2021.658267NLM
Fritsche Neto R, Galli G, Borges KLR, Costa Neto GMF, Alves FC, Sabadin F, Lyra DH, Morais PPP, Braatz de Andrade LR, Granato I, Crossa J. Optimizing genomic-enabled prediction in small-scale maize hHybrid breeding programs: a roadmap review [Internet]. Frontiers in Plant Science. 2021 ; 1-16.[citado 2024 nov. 03 ] Available from: https://doi.org/10.3389/fpls.2021.658267Vancouver
Fritsche Neto R, Galli G, Borges KLR, Costa Neto GMF, Alves FC, Sabadin F, Lyra DH, Morais PPP, Braatz de Andrade LR, Granato I, Crossa J. Optimizing genomic-enabled prediction in small-scale maize hHybrid breeding programs: a roadmap review [Internet]. Frontiers in Plant Science. 2021 ; 1-16.[citado 2024 nov. 03 ] Available from: https://doi.org/10.3389/fpls.2021.658267