Filtros : "Índia" "IFSC" Removidos: "Estados Unidos" "2002" "Financiamento FWF" Limpar

Filtros



Refine with date range


  • Source: Current Science. Unidade: IFSC

    Subjects: APRENDIZADO COMPUTACIONAL, AVALIAÇÃO DE TECNOLOGIAS DA SAÚDE

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOSWAMI, Anamitra et al. Design and development of robust and precision personalized medicine. [Opinion]. Current Science. Bangalore: Instituto de Física de São Carlos, Universidade de São Paulo. Disponível em: https://doi.org/10.1126/science.adm9218. Acesso em: 04 set. 2024. , 2024
    • APA

      Goswami, A., Sil, M., Ratnaparkhi, P., Goswami, A., Mukherjee, N., & Polikarpov, I. (2024). Design and development of robust and precision personalized medicine. [Opinion]. Current Science. Bangalore: Instituto de Física de São Carlos, Universidade de São Paulo. doi:10.1126/science.adm9218
    • NLM

      Goswami A, Sil M, Ratnaparkhi P, Goswami A, Mukherjee N, Polikarpov I. Design and development of robust and precision personalized medicine. [Opinion] [Internet]. Current Science. 2024 ; 126( 1): 149-150.[citado 2024 set. 04 ] Available from: https://doi.org/10.1126/science.adm9218
    • Vancouver

      Goswami A, Sil M, Ratnaparkhi P, Goswami A, Mukherjee N, Polikarpov I. Design and development of robust and precision personalized medicine. [Opinion] [Internet]. Current Science. 2024 ; 126( 1): 149-150.[citado 2024 set. 04 ] Available from: https://doi.org/10.1126/science.adm9218
  • Source: ChemistrySelect. Unidade: IFSC

    Subjects: FOTOCATÁLISE, IRRADIAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALNAGGAR, Gubran et al. Selective photocatalytic CO2 reduction through plasmonic Z-scheme Ag-Bi2O3-ZnO heterostructures. ChemistrySelect, v. 9, n. 19, p. e202400577 + supporting information, 2024Tradução . . Disponível em: https://doi.org/10.1002/slct.202400577. Acesso em: 04 set. 2024.
    • APA

      Alnaggar, G., Alkanad, K., Bajiri, M. A., Krishnappagowda, L. N., Ananda, S., & Drmosh, Q. (2024). Selective photocatalytic CO2 reduction through plasmonic Z-scheme Ag-Bi2O3-ZnO heterostructures. ChemistrySelect, 9( 19), e202400577 + supporting information. doi:10.1002/slct.202400577
    • NLM

      Alnaggar G, Alkanad K, Bajiri MA, Krishnappagowda LN, Ananda S, Drmosh Q. Selective photocatalytic CO2 reduction through plasmonic Z-scheme Ag-Bi2O3-ZnO heterostructures [Internet]. ChemistrySelect. 2024 ; 9( 19): e202400577 + supporting information.[citado 2024 set. 04 ] Available from: https://doi.org/10.1002/slct.202400577
    • Vancouver

      Alnaggar G, Alkanad K, Bajiri MA, Krishnappagowda LN, Ananda S, Drmosh Q. Selective photocatalytic CO2 reduction through plasmonic Z-scheme Ag-Bi2O3-ZnO heterostructures [Internet]. ChemistrySelect. 2024 ; 9( 19): e202400577 + supporting information.[citado 2024 set. 04 ] Available from: https://doi.org/10.1002/slct.202400577
  • Source: Journal of Medical Pharmaceutical and Allied Sciences. Unidade: IFSC

    Subjects: BIOTECNOLOGIA, ENVELHECIMENTO, CNIDARIA, FÁRMACOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOSWAMI, Anamitra et al. Decoding the aging nexus: unravelling genetic networks and pharmacological strategies for lifespan extension and the methuselah paradox. Journal of Medical Pharmaceutical and Allied Sciences, v. 13, n. Ja 2024, p. 6372-6376, 2024Tradução . . Disponível em: https://doi.org/10.55522/jmpas.V13I1.6243. Acesso em: 04 set. 2024.
    • APA

      Goswami, A., Mukherjee, N., Sil, M., Ghosh, A., Ratnaparkhi, P., Goswami, A., & Polikarpov, I. (2024). Decoding the aging nexus: unravelling genetic networks and pharmacological strategies for lifespan extension and the methuselah paradox. Journal of Medical Pharmaceutical and Allied Sciences, 13( Ja 2024), 6372-6376. doi:10.55522/jmpas.V13I1.6243
    • NLM

      Goswami A, Mukherjee N, Sil M, Ghosh A, Ratnaparkhi P, Goswami A, Polikarpov I. Decoding the aging nexus: unravelling genetic networks and pharmacological strategies for lifespan extension and the methuselah paradox [Internet]. Journal of Medical Pharmaceutical and Allied Sciences. 2024 ; 13( Ja 2024): 6372-6376.[citado 2024 set. 04 ] Available from: https://doi.org/10.55522/jmpas.V13I1.6243
    • Vancouver

      Goswami A, Mukherjee N, Sil M, Ghosh A, Ratnaparkhi P, Goswami A, Polikarpov I. Decoding the aging nexus: unravelling genetic networks and pharmacological strategies for lifespan extension and the methuselah paradox [Internet]. Journal of Medical Pharmaceutical and Allied Sciences. 2024 ; 13( Ja 2024): 6372-6376.[citado 2024 set. 04 ] Available from: https://doi.org/10.55522/jmpas.V13I1.6243
  • Source: Machine learning for advanced functional materials. Unidade: IFSC

    Subjects: APRENDIZADO COMPUTACIONAL, ELETROQUÍMICA, SENSOR, INTELIGÊNCIA ARTIFICIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JOSHI, Nirav Kumar Jitendrabhai e KUSHVAHA, Vinod e MADHUSHRI, Priyanka. Machine learning for advanced functional materials. [Prefácio]. Machine learning for advanced functional materials. Singapore: Springer. Disponível em: https://doi.org/10.1007/978-981-99-0393-1. Acesso em: 04 set. 2024. , 2023
    • APA

      Joshi, N. K. J., Kushvaha, V., & Madhushri, P. (2023). Machine learning for advanced functional materials. [Prefácio]. Machine learning for advanced functional materials. Singapore: Springer. doi:10.1007/978-981-99-0393-1
    • NLM

      Joshi NKJ, Kushvaha V, Madhushri P. Machine learning for advanced functional materials. [Prefácio] [Internet]. Machine learning for advanced functional materials. 2023 ;[citado 2024 set. 04 ] Available from: https://doi.org/10.1007/978-981-99-0393-1
    • Vancouver

      Joshi NKJ, Kushvaha V, Madhushri P. Machine learning for advanced functional materials. [Prefácio] [Internet]. Machine learning for advanced functional materials. 2023 ;[citado 2024 set. 04 ] Available from: https://doi.org/10.1007/978-981-99-0393-1
  • Source: Program. Conference titles: Brazil MRS Meeting. Unidade: IFSC

    Subjects: CÉLULAS SOLARES, NANOELETRÔNICA

    PrivadoHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GAVIM, Anderson Emanuel Ximim et al. Influence of solvent vapor and thermal annealing on the morphology and performance of solar cells based on PTB7-Th:CPDT-4F active layers. 2023, Anais.. Rio de Janeiro: Sociedade Brasileira de Pesquisa em Materiais - SBPMat, 2023. Disponível em: https://repositorio.usp.br/directbitstream/77986d67-4125-4d39-b9e2-d2e7ce4827d5/3160460.pdf. Acesso em: 04 set. 2024.
    • APA

      Gavim, A. E. X., Murali, R., Sireesha, L., Suresh, M., Raavi, S. S. K., & Miranda, P. B. (2023). Influence of solvent vapor and thermal annealing on the morphology and performance of solar cells based on PTB7-Th:CPDT-4F active layers. In Program. Rio de Janeiro: Sociedade Brasileira de Pesquisa em Materiais - SBPMat. Recuperado de https://repositorio.usp.br/directbitstream/77986d67-4125-4d39-b9e2-d2e7ce4827d5/3160460.pdf
    • NLM

      Gavim AEX, Murali R, Sireesha L, Suresh M, Raavi SSK, Miranda PB. Influence of solvent vapor and thermal annealing on the morphology and performance of solar cells based on PTB7-Th:CPDT-4F active layers [Internet]. Program. 2023 ;[citado 2024 set. 04 ] Available from: https://repositorio.usp.br/directbitstream/77986d67-4125-4d39-b9e2-d2e7ce4827d5/3160460.pdf
    • Vancouver

      Gavim AEX, Murali R, Sireesha L, Suresh M, Raavi SSK, Miranda PB. Influence of solvent vapor and thermal annealing on the morphology and performance of solar cells based on PTB7-Th:CPDT-4F active layers [Internet]. Program. 2023 ;[citado 2024 set. 04 ] Available from: https://repositorio.usp.br/directbitstream/77986d67-4125-4d39-b9e2-d2e7ce4827d5/3160460.pdf
  • Source: Optical Materials. Unidade: IFSC

    Subjects: LANTANÍDIOS, TÉRBIO, VIDRO CERÂMICO, ESPECTROSCOPIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZANUTO, Vitor Santaella et al. Time-resolved study of pump-induced refractive index changes in Tb3+-doped phosphate glasses: discrimination of electronic and thermal contributions. Optical Materials, v. 142, p. 114026-1-114026-8, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.optmat.2023.114026. Acesso em: 04 set. 2024.
    • APA

      Zanuto, V. S., Rocha, A. C. P., Santos, J. F. M. dos, Rajasekharaudayar, K. C., Silva, A. C. A., Dantas, N. O., et al. (2023). Time-resolved study of pump-induced refractive index changes in Tb3+-doped phosphate glasses: discrimination of electronic and thermal contributions. Optical Materials, 142, 114026-1-114026-8. doi:10.1016/j.optmat.2023.114026
    • NLM

      Zanuto VS, Rocha ACP, Santos JFM dos, Rajasekharaudayar KC, Silva ACA, Dantas NO, Moncorgé R, Catunda T. Time-resolved study of pump-induced refractive index changes in Tb3+-doped phosphate glasses: discrimination of electronic and thermal contributions [Internet]. Optical Materials. 2023 ; 142 114026-1-114026-8.[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/j.optmat.2023.114026
    • Vancouver

      Zanuto VS, Rocha ACP, Santos JFM dos, Rajasekharaudayar KC, Silva ACA, Dantas NO, Moncorgé R, Catunda T. Time-resolved study of pump-induced refractive index changes in Tb3+-doped phosphate glasses: discrimination of electronic and thermal contributions [Internet]. Optical Materials. 2023 ; 142 114026-1-114026-8.[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/j.optmat.2023.114026
  • Source: Photoacoustic and photothermal spectroscopy: principles and applications. Unidade: IFSC

    Subjects: MATERIAIS ÓPTICOS, ESPECTROSCOPIA, LASER, PROPRIEDADES DOS MATERIAIS, LANTANÍDIOS, ÍTRIO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DWIVEDI, Yashashchandra e CATUNDA, Tomaz e RAI, Shyam Bahadur. Photothermal effects in the optical material: principles and applications. Photoacoustic and photothermal spectroscopy: principles and applications. Tradução . Amsterdam: Elsevier, 2023. . Disponível em: https://doi.org/10.1016/B978-0-323-91732-2.00018-5. Acesso em: 04 set. 2024.
    • APA

      Dwivedi, Y., Catunda, T., & Rai, S. B. (2023). Photothermal effects in the optical material: principles and applications. In Photoacoustic and photothermal spectroscopy: principles and applications. Amsterdam: Elsevier. doi:10.1016/B978-0-323-91732-2.00018-5
    • NLM

      Dwivedi Y, Catunda T, Rai SB. Photothermal effects in the optical material: principles and applications [Internet]. In: Photoacoustic and photothermal spectroscopy: principles and applications. Amsterdam: Elsevier; 2023. [citado 2024 set. 04 ] Available from: https://doi.org/10.1016/B978-0-323-91732-2.00018-5
    • Vancouver

      Dwivedi Y, Catunda T, Rai SB. Photothermal effects in the optical material: principles and applications [Internet]. In: Photoacoustic and photothermal spectroscopy: principles and applications. Amsterdam: Elsevier; 2023. [citado 2024 set. 04 ] Available from: https://doi.org/10.1016/B978-0-323-91732-2.00018-5
  • Unidade: IFSC

    Subjects: SEMICONDUTORES, NANOPARTÍCULAS, ÓPTICA ELETRÔNICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      1D semiconducting hybrid nanostructures: synthesis and applications in gas sensing and optoelectronics. . Weinheim: Wiley-VCH. Disponível em: https://doi.org/10.1002/9783527837649. Acesso em: 04 set. 2024. , 2023
    • APA

      1D semiconducting hybrid nanostructures: synthesis and applications in gas sensing and optoelectronics. (2023). 1D semiconducting hybrid nanostructures: synthesis and applications in gas sensing and optoelectronics. Weinheim: Wiley-VCH. doi:10.1002/9783527837649
    • NLM

      1D semiconducting hybrid nanostructures: synthesis and applications in gas sensing and optoelectronics [Internet]. 2023 ;[citado 2024 set. 04 ] Available from: https://doi.org/10.1002/9783527837649
    • Vancouver

      1D semiconducting hybrid nanostructures: synthesis and applications in gas sensing and optoelectronics [Internet]. 2023 ;[citado 2024 set. 04 ] Available from: https://doi.org/10.1002/9783527837649
  • Unidade: IFSC

    Subjects: APRENDIZADO COMPUTACIONAL, ELETROQUÍMICA, SENSOR, INTELIGÊNCIA ARTIFICIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      Machine learning for advanced functional materials. . Singapore: Springer. Disponível em: https://doi.org/10.1007/978-981-99-0393-1. Acesso em: 04 set. 2024. , 2023
    • APA

      Machine learning for advanced functional materials. (2023). Machine learning for advanced functional materials. Singapore: Springer. doi:10.1007/978-981-99-0393-1
    • NLM

      Machine learning for advanced functional materials [Internet]. 2023 ;[citado 2024 set. 04 ] Available from: https://doi.org/10.1007/978-981-99-0393-1
    • Vancouver

      Machine learning for advanced functional materials [Internet]. 2023 ;[citado 2024 set. 04 ] Available from: https://doi.org/10.1007/978-981-99-0393-1
  • Source: Algal Research. Unidade: IFSC

    Subjects: CAMARÃO, BACTÉRIAS PATOGÊNICAS, FÍSICA COMPUTACIONAL, BIOLUMINESCÊNCIA, MODELAGEM MOLECULAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SIVAKUMAR, Krishnamoorthy e KANNAPPAN, Sudalayandi e BALAKRISHNAN, Vijayakumar. Molecular docking approaches of biomolecules extracted from red seaweed Kappaphycus alvarezii against hemolysin protein of bioluminescence disease-causing bacteria Vibrio harveyi. Algal Research, v. 74, p. 103207-1-103207-16 + supplementary data, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.algal.2023.103207. Acesso em: 04 set. 2024.
    • APA

      Sivakumar, K., Kannappan, S., & Balakrishnan, V. (2023). Molecular docking approaches of biomolecules extracted from red seaweed Kappaphycus alvarezii against hemolysin protein of bioluminescence disease-causing bacteria Vibrio harveyi. Algal Research, 74, 103207-1-103207-16 + supplementary data. doi:10.1016/j.algal.2023.103207
    • NLM

      Sivakumar K, Kannappan S, Balakrishnan V. Molecular docking approaches of biomolecules extracted from red seaweed Kappaphycus alvarezii against hemolysin protein of bioluminescence disease-causing bacteria Vibrio harveyi [Internet]. Algal Research. 2023 ; 74 103207-1-103207-16 + supplementary data.[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/j.algal.2023.103207
    • Vancouver

      Sivakumar K, Kannappan S, Balakrishnan V. Molecular docking approaches of biomolecules extracted from red seaweed Kappaphycus alvarezii against hemolysin protein of bioluminescence disease-causing bacteria Vibrio harveyi [Internet]. Algal Research. 2023 ; 74 103207-1-103207-16 + supplementary data.[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/j.algal.2023.103207
  • Source: Acta Materialia. Unidade: IFSC

    Subjects: VIDRO, PROPRIEDADES DOS MATERIAIS, ÓPTICA NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KESHRI, Shweta R. et al. Elucidating the influence of structure and Ag+-Na+ ion-exchange on crack-resistance and ionic conductivity of Na3Al1.8Si1.65P1.8O12 glass electrolyte. Acta Materialia, v. 227, p. 117745-1-117745-12, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.actamat.2022.117745. Acesso em: 04 set. 2024.
    • APA

      Keshri, S. R., Mandal, I., Ganisetti, S., Kasimuthumaniyan, S., Kumar, R., Gaddam, A., et al. (2022). Elucidating the influence of structure and Ag+-Na+ ion-exchange on crack-resistance and ionic conductivity of Na3Al1.8Si1.65P1.8O12 glass electrolyte. Acta Materialia, 227, 117745-1-117745-12. doi:10.1016/j.actamat.2022.117745
    • NLM

      Keshri SR, Mandal I, Ganisetti S, Kasimuthumaniyan S, Kumar R, Gaddam A, Shelke A, Ajithkumar TG, Gosvami NN, Krishnan NMA, Allu AR. Elucidating the influence of structure and Ag+-Na+ ion-exchange on crack-resistance and ionic conductivity of Na3Al1.8Si1.65P1.8O12 glass electrolyte [Internet]. Acta Materialia. 2022 ; 227 117745-1-117745-12.[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/j.actamat.2022.117745
    • Vancouver

      Keshri SR, Mandal I, Ganisetti S, Kasimuthumaniyan S, Kumar R, Gaddam A, Shelke A, Ajithkumar TG, Gosvami NN, Krishnan NMA, Allu AR. Elucidating the influence of structure and Ag+-Na+ ion-exchange on crack-resistance and ionic conductivity of Na3Al1.8Si1.65P1.8O12 glass electrolyte [Internet]. Acta Materialia. 2022 ; 227 117745-1-117745-12.[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/j.actamat.2022.117745
  • Source: BioEnergy Research. Unidades: EEL, IFSC

    Subjects: ETANOL, SACARIFICAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HANS, Meenu et al. Optimization of Dilute Acid Pretreatment for Enhanced Release of Fermentable Sugars from Sugarcane Bagasse and Validation by Biophysical Characterization. BioEnergy Research, v. 16, p. 416-434, 2022Tradução . . Disponível em: https://doi.org/10.1007/s12155-022-10474-6. Acesso em: 04 set. 2024.
    • APA

      Hans, M., Pellegrini, V. de O. A., Filgueiras, J. G., Azevêdo, E. R. de, Guimarães, F. E. G., Chandel, A. K., et al. (2022). Optimization of Dilute Acid Pretreatment for Enhanced Release of Fermentable Sugars from Sugarcane Bagasse and Validation by Biophysical Characterization. BioEnergy Research, 16, 416-434. doi:10.1007/s12155-022-10474-6
    • NLM

      Hans M, Pellegrini V de OA, Filgueiras JG, Azevêdo ER de, Guimarães FEG, Chandel AK, Chadha BS, Kumar S. Optimization of Dilute Acid Pretreatment for Enhanced Release of Fermentable Sugars from Sugarcane Bagasse and Validation by Biophysical Characterization [Internet]. BioEnergy Research. 2022 ;16 416-434.[citado 2024 set. 04 ] Available from: https://doi.org/10.1007/s12155-022-10474-6
    • Vancouver

      Hans M, Pellegrini V de OA, Filgueiras JG, Azevêdo ER de, Guimarães FEG, Chandel AK, Chadha BS, Kumar S. Optimization of Dilute Acid Pretreatment for Enhanced Release of Fermentable Sugars from Sugarcane Bagasse and Validation by Biophysical Characterization [Internet]. BioEnergy Research. 2022 ;16 416-434.[citado 2024 set. 04 ] Available from: https://doi.org/10.1007/s12155-022-10474-6
  • Source: European Physical Journal Special Topics. Unidade: IFSC

    Subjects: FOTÔNICA, ELETRÔNICA, ÓPTICA NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AHMED, Md Soif et al. Nonlinear optical techniques for characterization of organic electronic and photonic devices. European Physical Journal Special Topics, v. 231, n. 4, p. 695-711, 2022Tradução . . Disponível em: https://doi.org/10.1140/epjs/s11734-021-00391-8. Acesso em: 04 set. 2024.
    • APA

      Ahmed, M. S., Biswas, C., Miranda, P. B., & Raavi, S. S. K. (2022). Nonlinear optical techniques for characterization of organic electronic and photonic devices. European Physical Journal Special Topics, 231( 4), 695-711. doi:10.1140/epjs/s11734-021-00391-8
    • NLM

      Ahmed MS, Biswas C, Miranda PB, Raavi SSK. Nonlinear optical techniques for characterization of organic electronic and photonic devices [Internet]. European Physical Journal Special Topics. 2022 ; 231( 4): 695-711.[citado 2024 set. 04 ] Available from: https://doi.org/10.1140/epjs/s11734-021-00391-8
    • Vancouver

      Ahmed MS, Biswas C, Miranda PB, Raavi SSK. Nonlinear optical techniques for characterization of organic electronic and photonic devices [Internet]. European Physical Journal Special Topics. 2022 ; 231( 4): 695-711.[citado 2024 set. 04 ] Available from: https://doi.org/10.1140/epjs/s11734-021-00391-8
  • Source: Coordination Chemistry Reviews. Unidade: IFSC

    Subjects: NANOTECNOLOGIA, SENSOR, QUALIDADE DO AR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MALIK, Ritu e JOSHI, Nirav Kumar Jitendrabhai e TOMER, Vijay kumar. Functional graphitic carbon (IV) nitride: a versatile sensing material. Coordination Chemistry Reviews, v. 466, n. 13, p. 214611-1-214611-43, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.ccr.2022.214611. Acesso em: 04 set. 2024.
    • APA

      Malik, R., Joshi, N. K. J., & Tomer, V. kumar. (2022). Functional graphitic carbon (IV) nitride: a versatile sensing material. Coordination Chemistry Reviews, 466( 13), 214611-1-214611-43. doi:10.1016/j.ccr.2022.214611
    • NLM

      Malik R, Joshi NKJ, Tomer V kumar. Functional graphitic carbon (IV) nitride: a versatile sensing material [Internet]. Coordination Chemistry Reviews. 2022 ; 466( 13): 214611-1-214611-43.[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/j.ccr.2022.214611
    • Vancouver

      Malik R, Joshi NKJ, Tomer V kumar. Functional graphitic carbon (IV) nitride: a versatile sensing material [Internet]. Coordination Chemistry Reviews. 2022 ; 466( 13): 214611-1-214611-43.[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/j.ccr.2022.214611
  • Source: Journal of Non-Crystalline Solids. Unidade: IFSC

    Subjects: NEODÍMIO, VIDRO CERÂMICO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAZRIN, S. N. et al. Experimental and theoretical elastic studies on neodymium-doped zinc tellurite glasses. Journal of Non-Crystalline Solids, v. 575, n. Ja 2022, p. 121208-1-121208-15, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jnoncrysol.2021.121208. Acesso em: 04 set. 2024.
    • APA

      Nazrin, S. N., Halimah, M. K., Awshah, A. A. A., Yee, S. P., Hasnimulyati, L., Boukhris, I., et al. (2022). Experimental and theoretical elastic studies on neodymium-doped zinc tellurite glasses. Journal of Non-Crystalline Solids, 575( Ja 2022), 121208-1-121208-15. doi:10.1016/j.jnoncrysol.2021.121208
    • NLM

      Nazrin SN, Halimah MK, Awshah AAA, Yee SP, Hasnimulyati L, Boukhris I, Gowda GVJ, Azlan MN, Huaman JLC, Nadzim SN. Experimental and theoretical elastic studies on neodymium-doped zinc tellurite glasses [Internet]. Journal of Non-Crystalline Solids. 2022 ; 575( Ja 2022): 121208-1-121208-15.[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/j.jnoncrysol.2021.121208
    • Vancouver

      Nazrin SN, Halimah MK, Awshah AAA, Yee SP, Hasnimulyati L, Boukhris I, Gowda GVJ, Azlan MN, Huaman JLC, Nadzim SN. Experimental and theoretical elastic studies on neodymium-doped zinc tellurite glasses [Internet]. Journal of Non-Crystalline Solids. 2022 ; 575( Ja 2022): 121208-1-121208-15.[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/j.jnoncrysol.2021.121208
  • Unidade: IFSC

    Subjects: NANOPARTÍCULAS, POLÍMEROS (MATERIAIS)

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      THOMAS, Sabu et al. Silicon-based hybrid nanoparticles: fundamentals, properties, and applications. . Amsterdam: Elsevier. Disponível em: https://doi.org/10.1016/C2020-0-00520-7. Acesso em: 04 set. 2024. , 2022
    • APA

      Thomas, S., Nguyen, T. A., Ahmadi, M., Yasin, G., & Joshi, N. K. J. (2022). Silicon-based hybrid nanoparticles: fundamentals, properties, and applications. Amsterdam: Elsevier. doi:10.1016/C2020-0-00520-7
    • NLM

      Thomas S, Nguyen TA, Ahmadi M, Yasin G, Joshi NKJ. Silicon-based hybrid nanoparticles: fundamentals, properties, and applications [Internet]. 2022 ;[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/C2020-0-00520-7
    • Vancouver

      Thomas S, Nguyen TA, Ahmadi M, Yasin G, Joshi NKJ. Silicon-based hybrid nanoparticles: fundamentals, properties, and applications [Internet]. 2022 ;[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/C2020-0-00520-7
  • Source: Scripta Materialia. Unidade: IFSC

    Subjects: VIDRO, PROPRIEDADES DOS MATERIAIS, ÓPTICA NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JAGANNATH, G. et al. Tunable femtosecond nonlinear absorption and optical limiting thresholds of La2O3-B2O3 glasses by controlling the borate structural units. Scripta Materialia, v. 211, p. 114530-1-114530-8, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.scriptamat.2022.114530. Acesso em: 04 set. 2024.
    • APA

      Jagannath, G., Gaddam, A., Rao, S. V., Agarkov, D. A., Korableva, G. M., Ghosh, M., et al. (2022). Tunable femtosecond nonlinear absorption and optical limiting thresholds of La2O3-B2O3 glasses by controlling the borate structural units. Scripta Materialia, 211, 114530-1-114530-8. doi:10.1016/j.scriptamat.2022.114530
    • NLM

      Jagannath G, Gaddam A, Rao SV, Agarkov DA, Korableva GM, Ghosh M, Dey KK, Ferreira JMF, Allu AR. Tunable femtosecond nonlinear absorption and optical limiting thresholds of La2O3-B2O3 glasses by controlling the borate structural units [Internet]. Scripta Materialia. 2022 ; 211 114530-1-114530-8.[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/j.scriptamat.2022.114530
    • Vancouver

      Jagannath G, Gaddam A, Rao SV, Agarkov DA, Korableva GM, Ghosh M, Dey KK, Ferreira JMF, Allu AR. Tunable femtosecond nonlinear absorption and optical limiting thresholds of La2O3-B2O3 glasses by controlling the borate structural units [Internet]. Scripta Materialia. 2022 ; 211 114530-1-114530-8.[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/j.scriptamat.2022.114530
  • Source: Posters. Conference titles: São Paulo School of Advanced Science on Quantum Fluids and Applications. Unidades: IF, IFSC

    Subjects: BÓSON, ÓPTICA, ENTROPIA

    PrivadoHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROY, Rhombik et al. Phases, many-body entropy measures, and coherence of interacting bosons in optical lattices. 2022, Anais.. São Carlos: Universidade de São Paulo - USP, 2022. Disponível em: https://repositorio.usp.br/directbitstream/bfed9b9a-ec9c-4e8d-9126-b58a59e04d39/3071078.pdf. Acesso em: 04 set. 2024.
    • APA

      Roy, R., Gammal, A., Tsatsos, M., Chatterjee, B., Chakrabarti, B., & Lode, A. U. J. (2022). Phases, many-body entropy measures, and coherence of interacting bosons in optical lattices. In Posters. São Carlos: Universidade de São Paulo - USP. Recuperado de https://repositorio.usp.br/directbitstream/bfed9b9a-ec9c-4e8d-9126-b58a59e04d39/3071078.pdf
    • NLM

      Roy R, Gammal A, Tsatsos M, Chatterjee B, Chakrabarti B, Lode AUJ. Phases, many-body entropy measures, and coherence of interacting bosons in optical lattices [Internet]. Posters. 2022 ;[citado 2024 set. 04 ] Available from: https://repositorio.usp.br/directbitstream/bfed9b9a-ec9c-4e8d-9126-b58a59e04d39/3071078.pdf
    • Vancouver

      Roy R, Gammal A, Tsatsos M, Chatterjee B, Chakrabarti B, Lode AUJ. Phases, many-body entropy measures, and coherence of interacting bosons in optical lattices [Internet]. Posters. 2022 ;[citado 2024 set. 04 ] Available from: https://repositorio.usp.br/directbitstream/bfed9b9a-ec9c-4e8d-9126-b58a59e04d39/3071078.pdf
  • Source: New Journal of Chemistry. Unidade: IFSC

    Subjects: ZINCO, BAIXA TEMPERATURA, SENSOR, FILMES FINOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JOSHI, Nirav Kumar Jitendrabhai et al. Zinc stannate microcubes with an integrated microheater for low-temperature NO2 detection. New Journal of Chemistry, v. 46, n. 37, p. 17967-17976 + supplementary information, 2022Tradução . . Disponível em: https://doi.org/10.1039/D2NJ02709G. Acesso em: 04 set. 2024.
    • APA

      Joshi, N. K. J., Long, H., Naik, P., Kumar, A., Mastelaro, V. R., Oliveira Junior, O. N. de, et al. (2022). Zinc stannate microcubes with an integrated microheater for low-temperature NO2 detection. New Journal of Chemistry, 46( 37), 17967-17976 + supplementary information. doi:10.1039/D2NJ02709G
    • NLM

      Joshi NKJ, Long H, Naik P, Kumar A, Mastelaro VR, Oliveira Junior ON de, Zettl A, Lin L. Zinc stannate microcubes with an integrated microheater for low-temperature NO2 detection [Internet]. New Journal of Chemistry. 2022 ; 46( 37): 17967-17976 + supplementary information.[citado 2024 set. 04 ] Available from: https://doi.org/10.1039/D2NJ02709G
    • Vancouver

      Joshi NKJ, Long H, Naik P, Kumar A, Mastelaro VR, Oliveira Junior ON de, Zettl A, Lin L. Zinc stannate microcubes with an integrated microheater for low-temperature NO2 detection [Internet]. New Journal of Chemistry. 2022 ; 46( 37): 17967-17976 + supplementary information.[citado 2024 set. 04 ] Available from: https://doi.org/10.1039/D2NJ02709G
  • Source: International Journal of Hydrogen Energy. Unidade: IFSC

    Subjects: BIOTECNOLOGIA, FONTES RENOVÁVEIS DE ENERGIA, HIDROGÊNIO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRAR, Kamalpreet Kaur et al. An overview on progress, advances, and future outlook for biohydrogen production technology. International Journal of Hydrogen Energy, v. 47, n. 88, p. 37264-37281, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.ijhydene.2022.01.156. Acesso em: 04 set. 2024.
    • APA

      Brar, K. K., Cortez, A. A., Pellegrini, V. de O. A., Amulya, K., Polikarpov, I., Magdouli, S., et al. (2022). An overview on progress, advances, and future outlook for biohydrogen production technology. International Journal of Hydrogen Energy, 47( 88), 37264-37281. doi:10.1016/j.ijhydene.2022.01.156
    • NLM

      Brar KK, Cortez AA, Pellegrini V de OA, Amulya K, Polikarpov I, Magdouli S, Kumar M, Yang Y-H, Bhatia SK, Brar SK. An overview on progress, advances, and future outlook for biohydrogen production technology [Internet]. International Journal of Hydrogen Energy. 2022 ; 47( 88): 37264-37281.[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/j.ijhydene.2022.01.156
    • Vancouver

      Brar KK, Cortez AA, Pellegrini V de OA, Amulya K, Polikarpov I, Magdouli S, Kumar M, Yang Y-H, Bhatia SK, Brar SK. An overview on progress, advances, and future outlook for biohydrogen production technology [Internet]. International Journal of Hydrogen Energy. 2022 ; 47( 88): 37264-37281.[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/j.ijhydene.2022.01.156

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024