Filtros : "TEORIA ERGÓDICA" "Espanha" "ICMC" Removidos: "PROBABILIDADE" "McLaren, Bruce" "Tailândia" "Financiado pelo Government of Aragón, Spain" "Physical Review E" Limpar

Filtros



Refine with date range


  • Source: Dynamical Systems. Unidade: ICMC

    Subjects: TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUZZI, Claudio Aguinaldo e CARVALHO, Yagor Romano e LLIBRE, Jaume. Crossing limit cycles of planar discontinuous piecewise differential systems formed by isochronous centres. Dynamical Systems, v. 37, n. 4, p. 710-728, 2022Tradução . . Disponível em: https://doi.org/10.1080/14689367.2022.2122779. Acesso em: 19 nov. 2024.
    • APA

      Buzzi, C. A., Carvalho, Y. R., & Llibre, J. (2022). Crossing limit cycles of planar discontinuous piecewise differential systems formed by isochronous centres. Dynamical Systems, 37( 4), 710-728. doi:10.1080/14689367.2022.2122779
    • NLM

      Buzzi CA, Carvalho YR, Llibre J. Crossing limit cycles of planar discontinuous piecewise differential systems formed by isochronous centres [Internet]. Dynamical Systems. 2022 ; 37( 4): 710-728.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1080/14689367.2022.2122779
    • Vancouver

      Buzzi CA, Carvalho YR, Llibre J. Crossing limit cycles of planar discontinuous piecewise differential systems formed by isochronous centres [Internet]. Dynamical Systems. 2022 ; 37( 4): 710-728.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1080/14689367.2022.2122779
  • Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque e CARVALHO, Alexandre Nolasco de e LANGA, José Antonio. Attractors under autonomous and non-autonomous perturbations. . Providence: AMS. . Acesso em: 19 nov. 2024. , 2020
    • APA

      Bortolan, M. C., Carvalho, A. N. de, & Langa, J. A. (2020). Attractors under autonomous and non-autonomous perturbations. Providence: AMS.
    • NLM

      Bortolan MC, Carvalho AN de, Langa JA. Attractors under autonomous and non-autonomous perturbations. 2020 ;[citado 2024 nov. 19 ]
    • Vancouver

      Bortolan MC, Carvalho AN de, Langa JA. Attractors under autonomous and non-autonomous perturbations. 2020 ;[citado 2024 nov. 19 ]
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, TOPOLOGIA DIFERENCIAL, TEORIA DAS SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTÍNEZ-ALFARO, José e MEZA-SARMIENTO, Ingrid S e OLIVEIRA, Regilene Delazari dos Santos. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces. Topological Methods in Nonlinear Analysis, v. 51, n. 1, p. 183-213, 2018Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2017.051. Acesso em: 19 nov. 2024.
    • APA

      Martínez-Alfaro, J., Meza-Sarmiento, I. S., & Oliveira, R. D. dos S. (2018). Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces. Topological Methods in Nonlinear Analysis, 51( 1), 183-213. doi:10.12775/TMNA.2017.051
    • NLM

      Martínez-Alfaro J, Meza-Sarmiento IS, Oliveira RD dos S. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 183-213.[citado 2024 nov. 19 ] Available from: https://doi.org/10.12775/TMNA.2017.051
    • Vancouver

      Martínez-Alfaro J, Meza-Sarmiento IS, Oliveira RD dos S. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 183-213.[citado 2024 nov. 19 ] Available from: https://doi.org/10.12775/TMNA.2017.051
  • Source: Discrete and Continuous Dynamical Systems - Series B. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ITIKAWA, Jackson et al. Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones. Discrete and Continuous Dynamical Systems - Series B, v. No 2017, n. 9, p. 3259-3272, 2017Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2017136. Acesso em: 19 nov. 2024.
    • APA

      Itikawa, J., Llibre, J., Mereu, A. C., & Oliveira, R. D. dos S. (2017). Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones. Discrete and Continuous Dynamical Systems - Series B, No 2017( 9), 3259-3272. doi:10.3934/dcdsb.2017136
    • NLM

      Itikawa J, Llibre J, Mereu AC, Oliveira RD dos S. Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones [Internet]. Discrete and Continuous Dynamical Systems - Series B. 2017 ; No 2017( 9): 3259-3272.[citado 2024 nov. 19 ] Available from: https://doi.org/10.3934/dcdsb.2017136
    • Vancouver

      Itikawa J, Llibre J, Mereu AC, Oliveira RD dos S. Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones [Internet]. Discrete and Continuous Dynamical Systems - Series B. 2017 ; No 2017( 9): 3259-3272.[citado 2024 nov. 19 ] Available from: https://doi.org/10.3934/dcdsb.2017136
  • Source: Discrete and Continuous Dynamical Systems. Unidade: ICMC

    Subjects: TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALARCÓN, Begoña e GUÍÑEZ, Víctor e VIDALON, Carlos Teobaldo Gutierrez. Hopf bifurcation at infinity for planar vector fields. Discrete and Continuous Dynamical Systems, v. 17, n. 2, p. 247-258, 2007Tradução . . Disponível em: https://doi.org/10.3934/dcds.2007.17.247. Acesso em: 19 nov. 2024.
    • APA

      Alarcón, B., Guíñez, V., & Vidalon, C. T. G. (2007). Hopf bifurcation at infinity for planar vector fields. Discrete and Continuous Dynamical Systems, 17( 2), 247-258. doi:10.3934/dcds.2007.17.247
    • NLM

      Alarcón B, Guíñez V, Vidalon CTG. Hopf bifurcation at infinity for planar vector fields [Internet]. Discrete and Continuous Dynamical Systems. 2007 ; 17( 2): 247-258.[citado 2024 nov. 19 ] Available from: https://doi.org/10.3934/dcds.2007.17.247
    • Vancouver

      Alarcón B, Guíñez V, Vidalon CTG. Hopf bifurcation at infinity for planar vector fields [Internet]. Discrete and Continuous Dynamical Systems. 2007 ; 17( 2): 247-258.[citado 2024 nov. 19 ] Available from: https://doi.org/10.3934/dcds.2007.17.247

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024