Attractors under autonomous and non-autonomous perturbations (2020)
- Authors:
- Autor USP: CARVALHO, ALEXANDRE NOLASCO DE - ICMC
- Unidade: ICMC
- Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS; EQUAÇÕES DIFERENCIAIS PARCIAIS; SISTEMAS DINÂMICOS; TEORIA ERGÓDICA
- Language: Inglês
- Imprenta:
- Publisher: AMS
- Publisher place: Providence
- Date published: 2020
- Descrição física: 246 p
-
ABNT
BORTOLAN, Matheus Cheque e CARVALHO, Alexandre Nolasco de e LANGA, José Antonio. Attractors under autonomous and non-autonomous perturbations. . Providence: AMS. . Acesso em: 19 fev. 2026. , 2020 -
APA
Bortolan, M. C., Carvalho, A. N. de, & Langa, J. A. (2020). Attractors under autonomous and non-autonomous perturbations. Providence: AMS. -
NLM
Bortolan MC, Carvalho AN de, Langa JA. Attractors under autonomous and non-autonomous perturbations. 2020 ;[citado 2026 fev. 19 ] -
Vancouver
Bortolan MC, Carvalho AN de, Langa JA. Attractors under autonomous and non-autonomous perturbations. 2020 ;[citado 2026 fev. 19 ] - Compact convergence approach to reduction infinite dimensional systems to finite dimensions: applications
- Parabolic equations with localized large diffusion: rate of convergence of attractors
- Uma estimativa da dimensão fractal de atratores de sistemas dinâmicos gradient-like
- Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system
- Lower semicontinuity of attractors for gradient systems
- A general approximation scheme for attractors of abstract parabolic problems
- Non-autonomous semilinear evolution equations with almost sectorial operators
- Spatial homogeneity in parabolic problems with nonlinear boundary conditions
- Dynamics in dumbbell domains I: continuity of the set of equilibria
- Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
