Filtros : "TEORIA DOS GRAFOS" "Financiado pela FINEP" Removidos: " IFSC005" "Financiado pela FAPERGS" Limpar

Filtros



Refine with date range


  • Source: Algorithmica. Unidade: IME

    Subjects: TEORIA DOS GRAFOS, ALGORITMOS DE APROXIMAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CALINESCU, Gruia et al. A new approximation algorithm for finding heavy planar subgraphs. Algorithmica, v. 36, n. 2, p. 179-205, 2003Tradução . . Disponível em: https://doi.org/10.1007/s00453-002-1020-3. Acesso em: 11 nov. 2024.
    • APA

      Calinescu, G., Fernandes, C. G., Karloff, H., & Zelikovsky, A. (2003). A new approximation algorithm for finding heavy planar subgraphs. Algorithmica, 36( 2), 179-205. doi:10.1007/s00453-002-1020-3
    • NLM

      Calinescu G, Fernandes CG, Karloff H, Zelikovsky A. A new approximation algorithm for finding heavy planar subgraphs [Internet]. Algorithmica. 2003 ; 36( 2): 179-205.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s00453-002-1020-3
    • Vancouver

      Calinescu G, Fernandes CG, Karloff H, Zelikovsky A. A new approximation algorithm for finding heavy planar subgraphs [Internet]. Algorithmica. 2003 ; 36( 2): 179-205.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s00453-002-1020-3
  • Source: Electronic Journal of Combinatorics. Unidade: IME

    Assunto: TEORIA DOS GRAFOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DONADELLI JUNIOR, Jair e KOHAYAKAWA, Yoshiharu. A density result for random sparse oriented graphs and its relation to a conjecture of woodall. Electronic Journal of Combinatorics, v. 9, n. 1, p. 1-10, 2002Tradução . . Disponível em: https://doi.org/10.37236/1661. Acesso em: 11 nov. 2024.
    • APA

      Donadelli Junior, J., & Kohayakawa, Y. (2002). A density result for random sparse oriented graphs and its relation to a conjecture of woodall. Electronic Journal of Combinatorics, 9( 1), 1-10. doi:10.37236/1661
    • NLM

      Donadelli Junior J, Kohayakawa Y. A density result for random sparse oriented graphs and its relation to a conjecture of woodall [Internet]. Electronic Journal of Combinatorics. 2002 ; 9( 1): 1-10.[citado 2024 nov. 11 ] Available from: https://doi.org/10.37236/1661
    • Vancouver

      Donadelli Junior J, Kohayakawa Y. A density result for random sparse oriented graphs and its relation to a conjecture of woodall [Internet]. Electronic Journal of Combinatorics. 2002 ; 9( 1): 1-10.[citado 2024 nov. 11 ] Available from: https://doi.org/10.37236/1661
  • Source: Journal of the London Mathematical Society. Second Series. Unidade: IME

    Assunto: TEORIA DOS GRAFOS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOLLOBÁS, Béla e KOHAYAKAWA, Yoshiharu e SCHELP, Richard H. Essentially infinite colourings of graphs. Journal of the London Mathematical Society. Second Series, v. 61, n. 3, p. 658-670, 2000Tradução . . Disponível em: https://doi-org.ez67.periodicos.capes.gov.br/10.1112/S0024610700008796. Acesso em: 11 nov. 2024.
    • APA

      Bollobás, B., Kohayakawa, Y., & Schelp, R. H. (2000). Essentially infinite colourings of graphs. Journal of the London Mathematical Society. Second Series, 61( 3), 658-670. doi:10.1112/S0024610700008796
    • NLM

      Bollobás B, Kohayakawa Y, Schelp RH. Essentially infinite colourings of graphs [Internet]. Journal of the London Mathematical Society. Second Series. 2000 ; 61( 3): 658-670.[citado 2024 nov. 11 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1112/S0024610700008796
    • Vancouver

      Bollobás B, Kohayakawa Y, Schelp RH. Essentially infinite colourings of graphs [Internet]. Journal of the London Mathematical Society. Second Series. 2000 ; 61( 3): 658-670.[citado 2024 nov. 11 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1112/S0024610700008796
  • Source: Random Structures & Algorithms. Unidade: IME

    Subjects: TEORIA DOS GRAFOS, COMBINATÓRIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHAYAKAWA, Yoshiharu e KREUTER, Bernd e OSTHUS, Deryk. The length of random subsets of Boolean lattices. Random Structures & Algorithms, v. 16, n. 2, p. 177-194, 2000Tradução . . Disponível em: https://doi.org/10.1002/(SICI)1098-2418(200003)16:2<177::AID-RSA4>3.0.CO;2-9. Acesso em: 11 nov. 2024.
    • APA

      Kohayakawa, Y., Kreuter, B., & Osthus, D. (2000). The length of random subsets of Boolean lattices. Random Structures & Algorithms, 16( 2), 177-194. doi:10.1002/(SICI)1098-2418(200003)16:2<177::AID-RSA4>3.0.CO;2-9
    • NLM

      Kohayakawa Y, Kreuter B, Osthus D. The length of random subsets of Boolean lattices [Internet]. Random Structures & Algorithms. 2000 ; 16( 2): 177-194.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1002/(SICI)1098-2418(200003)16:2<177::AID-RSA4>3.0.CO;2-9
    • Vancouver

      Kohayakawa Y, Kreuter B, Osthus D. The length of random subsets of Boolean lattices [Internet]. Random Structures & Algorithms. 2000 ; 16( 2): 177-194.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1002/(SICI)1098-2418(200003)16:2<177::AID-RSA4>3.0.CO;2-9
  • Source: Combinatorica volume. Unidade: IME

    Subjects: COMBINATÓRIA, TEORIA DOS GRAFOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHAYAKAWA, Yoshiharu e PRÖMEL, Hans Jürgen e RODL, Vojtech. Induced Ramsey Numbers. Combinatorica volume, v. 18, n. 3, p. 373-404, 1998Tradução . . Disponível em: https://doi.org/10.1007/pl00009828. Acesso em: 11 nov. 2024.
    • APA

      Kohayakawa, Y., Prömel, H. J., & Rodl, V. (1998). Induced Ramsey Numbers. Combinatorica volume, 18( 3), 373-404. doi:10.1007/pl00009828
    • NLM

      Kohayakawa Y, Prömel HJ, Rodl V. Induced Ramsey Numbers [Internet]. Combinatorica volume. 1998 ; 18( 3): 373-404.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/pl00009828
    • Vancouver

      Kohayakawa Y, Prömel HJ, Rodl V. Induced Ramsey Numbers [Internet]. Combinatorica volume. 1998 ; 18( 3): 373-404.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/pl00009828

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024