Filtros : "REDES NEURAIS" "LIANG, ZHAO" "ICMC" Removidos: "Indexado no: Mathematical Reviews" "PESQUISA OPERACIONAL" "FFCLRP-594" "Rússia" "International Symposium on Computer-Based Medical Systems - CBMS" Limpar

Filtros



Refine with date range


  • Source: Proceedings. Conference titles: International Joint Conference on Neural Networks - IJCNN. Unidades: FFCLRP, ICMC

    Subjects: REDES NEURAIS, TEORIA DOS GRAFOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTINS, Luan Vinicius de Carvalho e DONGHONG, Ji e LIANG, Zhao. Modelling graph neural network by aggregating the activation maps of self-organizing map. 2024, Anais.. Piscataway: IEEE, 2024. Disponível em: https://doi.org/10.1109/IJCNN60899.2024.10650514. Acesso em: 18 nov. 2024.
    • APA

      Martins, L. V. de C., Donghong, J., & Liang, Z. (2024). Modelling graph neural network by aggregating the activation maps of self-organizing map. In Proceedings. Piscataway: IEEE. doi:10.1109/IJCNN60899.2024.10650514
    • NLM

      Martins LV de C, Donghong J, Liang Z. Modelling graph neural network by aggregating the activation maps of self-organizing map [Internet]. Proceedings. 2024 ;[citado 2024 nov. 18 ] Available from: https://doi.org/10.1109/IJCNN60899.2024.10650514
    • Vancouver

      Martins LV de C, Donghong J, Liang Z. Modelling graph neural network by aggregating the activation maps of self-organizing map [Internet]. Proceedings. 2024 ;[citado 2024 nov. 18 ] Available from: https://doi.org/10.1109/IJCNN60899.2024.10650514
  • Source: Proceedings. Conference titles: International Joint Conference on Neural Networks - IJCNN. Unidades: FFCLRP, ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, REDES NEURAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANGHINONI, Leandro et al. TransGNN: a transductive graph neural network with graph dynamic embedding. 2023, Anais.. Piscataway: IEEE, 2023. Disponível em: https://doi.org/10.1109/IJCNN54540.2023.10191134. Acesso em: 18 nov. 2024.
    • APA

      Anghinoni, L., Yu-Tao, Z., Donghong, J., & Liang, Z. (2023). TransGNN: a transductive graph neural network with graph dynamic embedding. In Proceedings. Piscataway: IEEE. doi:10.1109/IJCNN54540.2023.10191134
    • NLM

      Anghinoni L, Yu-Tao Z, Donghong J, Liang Z. TransGNN: a transductive graph neural network with graph dynamic embedding [Internet]. Proceedings. 2023 ;[citado 2024 nov. 18 ] Available from: https://doi.org/10.1109/IJCNN54540.2023.10191134
    • Vancouver

      Anghinoni L, Yu-Tao Z, Donghong J, Liang Z. TransGNN: a transductive graph neural network with graph dynamic embedding [Internet]. Proceedings. 2023 ;[citado 2024 nov. 18 ] Available from: https://doi.org/10.1109/IJCNN54540.2023.10191134
  • Source: Journal of Applied Nonlinear Dynamics. Unidades: FFCLRP, ICMC

    Subjects: PARTÍCULAS (FÍSICA NUCLEAR), APRENDIZADO COMPUTACIONAL, REDES NEURAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VERRI, Filipe Alves Neto e URIO, Paulo Roberto e ZHAO, Liang. Advantages of edge-centric collective dynamics in machine learning tasks. Journal of Applied Nonlinear Dynamics, v. 7, n. 3, p. 269-285, 2018Tradução . . Disponível em: https://doi.org/10.5890/jand.2018.09.005. Acesso em: 18 nov. 2024.
    • APA

      Verri, F. A. N., Urio, P. R., & Zhao, L. (2018). Advantages of edge-centric collective dynamics in machine learning tasks. Journal of Applied Nonlinear Dynamics, 7( 3), 269-285. doi:10.5890/jand.2018.09.005
    • NLM

      Verri FAN, Urio PR, Zhao L. Advantages of edge-centric collective dynamics in machine learning tasks [Internet]. Journal of Applied Nonlinear Dynamics. 2018 ; 7( 3): 269-285.[citado 2024 nov. 18 ] Available from: https://doi.org/10.5890/jand.2018.09.005
    • Vancouver

      Verri FAN, Urio PR, Zhao L. Advantages of edge-centric collective dynamics in machine learning tasks [Internet]. Journal of Applied Nonlinear Dynamics. 2018 ; 7( 3): 269-285.[citado 2024 nov. 18 ] Available from: https://doi.org/10.5890/jand.2018.09.005
  • Source: Annals. Conference titles: International Joint Conference on Neural Networks - IJCNN. Unidades: FFCLRP, ICMC

    Subjects: REDES NEURAIS, TECNOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COLLIRI, Tiago Santos et al. A network-based high level data classification technique. 2018, Anais.. Rio de Janeiro: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 2018. Disponível em: https://doi.org/10.1109/ijcnn.2018.8489081. Acesso em: 18 nov. 2024.
    • APA

      Colliri, T. S., Ji, D., Pan, H., & Liang, Z. (2018). A network-based high level data classification technique. In Annals. Rio de Janeiro: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. doi:10.1109/ijcnn.2018.8489081
    • NLM

      Colliri TS, Ji D, Pan H, Liang Z. A network-based high level data classification technique [Internet]. Annals. 2018 ;[citado 2024 nov. 18 ] Available from: https://doi.org/10.1109/ijcnn.2018.8489081
    • Vancouver

      Colliri TS, Ji D, Pan H, Liang Z. A network-based high level data classification technique [Internet]. Annals. 2018 ;[citado 2024 nov. 18 ] Available from: https://doi.org/10.1109/ijcnn.2018.8489081
  • Source: Proceedings. Conference titles: International Joint Conference on Neural Networks - IJCNN. Unidades: ICMC, FFCLRP

    Subjects: INTELIGÊNCIA ARTIFICIAL, REDES NEURAIS, COMPUTAÇÃO BIOINSPIRADA, APRENDIZADO COMPUTACIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELERI, Roberto A et al. A flocking-like technique to perform semi-supervised learning. 2014, Anais.. Piscataway: IEEE, 2014. Disponível em: https://doi.org/10.1109/IJCNN.2014.6889434. Acesso em: 18 nov. 2024.
    • APA

      Gueleri, R. A., Cupertino, T. H., Carvalho, A. C. P. de L. F. de, & Liang, Z. (2014). A flocking-like technique to perform semi-supervised learning. In Proceedings. Piscataway: IEEE. doi:10.1109/IJCNN.2014.6889434
    • NLM

      Gueleri RA, Cupertino TH, Carvalho ACP de LF de, Liang Z. A flocking-like technique to perform semi-supervised learning [Internet]. Proceedings. 2014 ;[citado 2024 nov. 18 ] Available from: https://doi.org/10.1109/IJCNN.2014.6889434
    • Vancouver

      Gueleri RA, Cupertino TH, Carvalho ACP de LF de, Liang Z. A flocking-like technique to perform semi-supervised learning [Internet]. Proceedings. 2014 ;[citado 2024 nov. 18 ] Available from: https://doi.org/10.1109/IJCNN.2014.6889434
  • Source: Chaos (Woodbury, N.Y.). Unidade: ICMC

    Assunto: REDES NEURAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COCA SALAZAR, Andrés Eduardo e TOST, Gerard O. e ZHAO, Liang. Characterizing chaotic melodies in automatic music composition. Chaos (Woodbury, N.Y.), v. 20, n. 3, p. 033125-1-033125-12, 2010Tradução . . Disponível em: https://doi.org/10.1063/1.3487516. Acesso em: 18 nov. 2024.
    • APA

      Coca Salazar, A. E., Tost, G. O., & Zhao, L. (2010). Characterizing chaotic melodies in automatic music composition. Chaos (Woodbury, N.Y.), 20( 3), 033125-1-033125-12. doi:10.1063/1.3487516
    • NLM

      Coca Salazar AE, Tost GO, Zhao L. Characterizing chaotic melodies in automatic music composition [Internet]. Chaos (Woodbury, N.Y.). 2010 ; 20( 3): 033125-1-033125-12.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1063/1.3487516
    • Vancouver

      Coca Salazar AE, Tost GO, Zhao L. Characterizing chaotic melodies in automatic music composition [Internet]. Chaos (Woodbury, N.Y.). 2010 ; 20( 3): 033125-1-033125-12.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1063/1.3487516
  • Source: Physical Review E. Unidade: ICMC

    Assunto: REDES NEURAIS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIANG, Xiaoming et al. Phase-disorder-induced double resonance of neuronal activity. Physical Review E, v. 82, n. 1, p. 010902_1-010902_4, 2010Tradução . . Disponível em: https://doi.org/10.1103/physreve.82.010902. Acesso em: 18 nov. 2024.
    • APA

      Liang, X., Liu, Z., Dhamala, M., & Zhao, L. (2010). Phase-disorder-induced double resonance of neuronal activity. Physical Review E, 82( 1), 010902_1-010902_4. doi:10.1103/physreve.82.010902
    • NLM

      Liang X, Liu Z, Dhamala M, Zhao L. Phase-disorder-induced double resonance of neuronal activity [Internet]. Physical Review E. 2010 ; 82( 1): 010902_1-010902_4.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1103/physreve.82.010902
    • Vancouver

      Liang X, Liu Z, Dhamala M, Zhao L. Phase-disorder-induced double resonance of neuronal activity [Internet]. Physical Review E. 2010 ; 82( 1): 010902_1-010902_4.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1103/physreve.82.010902
  • Source: Proceedings. Conference titles: International Joint Conference on Neural Networks - IJCNN. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, REDES NEURAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      QUILES, Marcos G et al. Label propagation through neuronal synchrony. 2010, Anais.. Piscataway: IEEE, 2010. Disponível em: https://doi.org/10.1109/IJCNN.2010.5596809. Acesso em: 18 nov. 2024.
    • APA

      Quiles, M. G., Liang, Z., Breve, F. A., & Rocha, A. (2010). Label propagation through neuronal synchrony. In Proceedings. Piscataway: IEEE. doi:10.1109/IJCNN.2010.5596809
    • NLM

      Quiles MG, Liang Z, Breve FA, Rocha A. Label propagation through neuronal synchrony [Internet]. Proceedings. 2010 ;[citado 2024 nov. 18 ] Available from: https://doi.org/10.1109/IJCNN.2010.5596809
    • Vancouver

      Quiles MG, Liang Z, Breve FA, Rocha A. Label propagation through neuronal synchrony [Internet]. Proceedings. 2010 ;[citado 2024 nov. 18 ] Available from: https://doi.org/10.1109/IJCNN.2010.5596809
  • Source: Neural Networks. Unidade: ICMC

    Assunto: REDES NEURAIS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BREVE, Fabricio A. et al. Chaotic phase synchronization and desynchronization in an oscillator network for object selection. Neural Networks, v. 22, n. 5-6, p. 728-737, 2009Tradução . . Disponível em: https://doi.org/10.1016/j.neunet.2009.06.027. Acesso em: 18 nov. 2024.
    • APA

      Breve, F. A., Zhao, L., Quiles, M. G., & Macau, E. E. N. (2009). Chaotic phase synchronization and desynchronization in an oscillator network for object selection. Neural Networks, 22( 5-6), 728-737. doi:10.1016/j.neunet.2009.06.027
    • NLM

      Breve FA, Zhao L, Quiles MG, Macau EEN. Chaotic phase synchronization and desynchronization in an oscillator network for object selection [Internet]. Neural Networks. 2009 ;22( 5-6): 728-737.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neunet.2009.06.027
    • Vancouver

      Breve FA, Zhao L, Quiles MG, Macau EEN. Chaotic phase synchronization and desynchronization in an oscillator network for object selection [Internet]. Neural Networks. 2009 ;22( 5-6): 728-737.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neunet.2009.06.027
  • Source: Neurocomputing. Unidade: ICMC

    Subjects: REDES NEURAIS, VISUALIZAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIANG, Zhao e CUPERTINO, Thiago Henrique e BERTINI JUNIOR, João Roberto. Chaotic synchronization in general network topology for scene segmentation. Neurocomputing, v. 71, n. 16-18, p. 3360-3366, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2008.02.024. Acesso em: 18 nov. 2024.
    • APA

      Liang, Z., Cupertino, T. H., & Bertini Junior, J. R. (2008). Chaotic synchronization in general network topology for scene segmentation. Neurocomputing, 71( 16-18), 3360-3366. doi:10.1016/j.neucom.2008.02.024
    • NLM

      Liang Z, Cupertino TH, Bertini Junior JR. Chaotic synchronization in general network topology for scene segmentation [Internet]. Neurocomputing. 2008 ; 71( 16-18): 3360-3366.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neucom.2008.02.024
    • Vancouver

      Liang Z, Cupertino TH, Bertini Junior JR. Chaotic synchronization in general network topology for scene segmentation [Internet]. Neurocomputing. 2008 ; 71( 16-18): 3360-3366.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neucom.2008.02.024
  • Source: Neurocomputing. Unidade: ICMC

    Subjects: REDES NEURAIS, VISUALIZAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIANG, Zhao e BREVE, Fabricio Aparecido. Chaotic synchronization in 2D lattice for scene segmentation. Neurocomputing, v. 71, n. 13-15, p. 2761-2771, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2007.09.011. Acesso em: 18 nov. 2024.
    • APA

      Liang, Z., & Breve, F. A. (2008). Chaotic synchronization in 2D lattice for scene segmentation. Neurocomputing, 71( 13-15), 2761-2771. doi:10.1016/j.neucom.2007.09.011
    • NLM

      Liang Z, Breve FA. Chaotic synchronization in 2D lattice for scene segmentation [Internet]. Neurocomputing. 2008 ; 71( 13-15): 2761-2771.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neucom.2007.09.011
    • Vancouver

      Liang Z, Breve FA. Chaotic synchronization in 2D lattice for scene segmentation [Internet]. Neurocomputing. 2008 ; 71( 13-15): 2761-2771.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.neucom.2007.09.011
  • Source: Proceedings. Conference titles: International Joint Conference on Neural Networks - IJCNN. Unidade: ICMC

    Subjects: REDES NEURAIS, RECONHECIMENTO DE IMAGEM, PROCESSAMENTO DE IMAGENS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIANG, Zhao et al. A dynamical model for multi-scale pixel clustering. 2003, Anais.. Piscataway: IEEE, 2003. Disponível em: https://doi.org/10.1109/IJCNN.2003.1223932. Acesso em: 18 nov. 2024.
    • APA

      Liang, Z., Damiance Junior, A. P. G., Furukawa, R. A., & Carvalho, A. C. P. de L. F. de. (2003). A dynamical model for multi-scale pixel clustering. In Proceedings. Piscataway: IEEE. doi:10.1109/IJCNN.2003.1223932
    • NLM

      Liang Z, Damiance Junior APG, Furukawa RA, Carvalho ACP de LF de. A dynamical model for multi-scale pixel clustering [Internet]. Proceedings. 2003 ;[citado 2024 nov. 18 ] Available from: https://doi.org/10.1109/IJCNN.2003.1223932
    • Vancouver

      Liang Z, Damiance Junior APG, Furukawa RA, Carvalho ACP de LF de. A dynamical model for multi-scale pixel clustering [Internet]. Proceedings. 2003 ;[citado 2024 nov. 18 ] Available from: https://doi.org/10.1109/IJCNN.2003.1223932

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024