Filtros : "HOMOTOPIA" Removido: "Matemática" Limpar

Filtros



Refine with date range


  • Source: Quarterly Journal of Mathematics. Unidade: ICMC

    Subjects: HOMOTOPIA, COHOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IDRISSI, Najib e VIEIRA, Renato Vasconcellos. Non-formality of Voronov's swiss-cheese operads. Quarterly Journal of Mathematics, v. 75, n. 1, p. 63-95, 2024Tradução . . Disponível em: https://doi.org/10.1093/qmath/haad041. Acesso em: 11 nov. 2024.
    • APA

      Idrissi, N., & Vieira, R. V. (2024). Non-formality of Voronov's swiss-cheese operads. Quarterly Journal of Mathematics, 75( 1), 63-95. doi:10.1093/qmath/haad041
    • NLM

      Idrissi N, Vieira RV. Non-formality of Voronov's swiss-cheese operads [Internet]. Quarterly Journal of Mathematics. 2024 ; 75( 1): 63-95.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1093/qmath/haad041
    • Vancouver

      Idrissi N, Vieira RV. Non-formality of Voronov's swiss-cheese operads [Internet]. Quarterly Journal of Mathematics. 2024 ; 75( 1): 63-95.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1093/qmath/haad041
  • Source: Resumos. Conference titles: Workshop on Algebraic Topology and Applications - WATA. Unidade: ICMC

    Subjects: ESPAÇOS TOPOLÓGICOS, HOMOTOPIA

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PENTEADO, Northon Canevari Leme e MANZOLI NETO, Oziride. A root theory development in dimension 3. 2023, Anais.. São Carlos: [s.n.], 2023. Disponível em: https://www.dm.ufscar.br/eventos/wata/caderno.pdf. Acesso em: 11 nov. 2024.
    • APA

      Penteado, N. C. L., & Manzoli Neto, O. (2023). A root theory development in dimension 3. In Resumos. São Carlos: [s.n.]. Recuperado de https://www.dm.ufscar.br/eventos/wata/caderno.pdf
    • NLM

      Penteado NCL, Manzoli Neto O. A root theory development in dimension 3 [Internet]. Resumos. 2023 ;[citado 2024 nov. 11 ] Available from: https://www.dm.ufscar.br/eventos/wata/caderno.pdf
    • Vancouver

      Penteado NCL, Manzoli Neto O. A root theory development in dimension 3 [Internet]. Resumos. 2023 ;[citado 2024 nov. 11 ] Available from: https://www.dm.ufscar.br/eventos/wata/caderno.pdf
  • Source: Communications in Mathematics. Unidade: ICMC

    Subjects: COHOMOLOGIA DE GRUPOS, HOMOTOPIA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MIRZAII, Behrooz e MOKARI, Fatemeh Yeganeh. Some remarks on the homology of nilpotent groups. Communications in Mathematics, v. 31, n. 1, p. 359-367, 2023Tradução . . Disponível em: https://doi.org/10.46298/cm.10453. Acesso em: 11 nov. 2024.
    • APA

      Mirzaii, B., & Mokari, F. Y. (2023). Some remarks on the homology of nilpotent groups. Communications in Mathematics, 31( 1), 359-367. doi:10.46298/cm.10453
    • NLM

      Mirzaii B, Mokari FY. Some remarks on the homology of nilpotent groups [Internet]. Communications in Mathematics. 2023 ; 31( 1): 359-367.[citado 2024 nov. 11 ] Available from: https://doi.org/10.46298/cm.10453
    • Vancouver

      Mirzaii B, Mokari FY. Some remarks on the homology of nilpotent groups [Internet]. Communications in Mathematics. 2023 ; 31( 1): 359-367.[citado 2024 nov. 11 ] Available from: https://doi.org/10.46298/cm.10453
  • Source: Journal of Fixed Point Theory and Applications. Unidades: IME, ICMC

    Subjects: TEOREMA DO PONTO FIXO, HOMOLOGIA, HOMOTOPIA, TOPOLOGIA DE DIMENSÃO BAIXA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FENILLE, Marcio Colombo e GONÇALVES, Daciberg Lima e MANZOLI NETO, Oziride. Strong surjections from two-complexes with odd order top-cohomology onto the projective plane. Journal of Fixed Point Theory and Applications, v. 25, n. artigo 62, p. 1-13, 2023Tradução . . Disponível em: https://doi.org/10.1007/s11784-023-01066-8. Acesso em: 11 nov. 2024.
    • APA

      Fenille, M. C., Gonçalves, D. L., & Manzoli Neto, O. (2023). Strong surjections from two-complexes with odd order top-cohomology onto the projective plane. Journal of Fixed Point Theory and Applications, 25( artigo 62), 1-13. doi:10.1007/s11784-023-01066-8
    • NLM

      Fenille MC, Gonçalves DL, Manzoli Neto O. Strong surjections from two-complexes with odd order top-cohomology onto the projective plane [Internet]. Journal of Fixed Point Theory and Applications. 2023 ; 25( artigo 62): 1-13.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s11784-023-01066-8
    • Vancouver

      Fenille MC, Gonçalves DL, Manzoli Neto O. Strong surjections from two-complexes with odd order top-cohomology onto the projective plane [Internet]. Journal of Fixed Point Theory and Applications. 2023 ; 25( artigo 62): 1-13.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s11784-023-01066-8
  • Source: Algebraic and Geometric Topology. Unidade: ICMC

    Subjects: HOMOTOPIA, ANÉIS E ÁLGEBRAS COMUTATIVOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VIEIRA, Renato Vasconcellos. Recognition of connective commutative algebra spectra through an idempotent quasiadjunction. Algebraic and Geometric Topology, v. 23, n. 1, p. 295-338, 2023Tradução . . Disponível em: https://doi.org/10.2140/agt.2023.23.295. Acesso em: 11 nov. 2024.
    • APA

      Vieira, R. V. (2023). Recognition of connective commutative algebra spectra through an idempotent quasiadjunction. Algebraic and Geometric Topology, 23( 1), 295-338. doi:10.2140/agt.2023.23.295
    • NLM

      Vieira RV. Recognition of connective commutative algebra spectra through an idempotent quasiadjunction [Internet]. Algebraic and Geometric Topology. 2023 ; 23( 1): 295-338.[citado 2024 nov. 11 ] Available from: https://doi.org/10.2140/agt.2023.23.295
    • Vancouver

      Vieira RV. Recognition of connective commutative algebra spectra through an idempotent quasiadjunction [Internet]. Algebraic and Geometric Topology. 2023 ; 23( 1): 295-338.[citado 2024 nov. 11 ] Available from: https://doi.org/10.2140/agt.2023.23.295
  • Source: Applied Categorical Structures. Unidade: ICMC

    Subjects: TEORIA DAS CATEGORIAS, HOMOTOPIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOREGIAN, Fosco e SANTOS, Emily de Oliveira. Coends of higher arity. Applied Categorical Structures, v. 30, n. 1, p. 173-221, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10485-021-09653-x. Acesso em: 11 nov. 2024.
    • APA

      Loregian, F., & Santos, E. de O. (2022). Coends of higher arity. Applied Categorical Structures, 30( 1), 173-221. doi:10.1007/s10485-021-09653-x
    • NLM

      Loregian F, Santos E de O. Coends of higher arity [Internet]. Applied Categorical Structures. 2022 ; 30( 1): 173-221.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10485-021-09653-x
    • Vancouver

      Loregian F, Santos E de O. Coends of higher arity [Internet]. Applied Categorical Structures. 2022 ; 30( 1): 173-221.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10485-021-09653-x
  • Source: Advanced Studies : Euro-Tbilisi Mathematical Journal. Unidade: ICMC

    Subjects: COHOMOLOGIA DE GRUPOS, HOMOTOPIA, TEORIAS DE HOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MIRZAII, Behrooz e MOKARI, Fatemeh Yeganeh e ORDINOLA, David Martín Carbajal. Third homology of perfect central extensions. Advanced Studies : Euro-Tbilisi Mathematical Journal, v. 14, n. 4, p. 61-80, 2021Tradução . . Disponível em: https://doi.org/10.3251/asetmj/1932200814. Acesso em: 11 nov. 2024.
    • APA

      Mirzaii, B., Mokari, F. Y., & Ordinola, D. M. C. (2021). Third homology of perfect central extensions. Advanced Studies : Euro-Tbilisi Mathematical Journal, 14( 4), 61-80. doi:10.3251/asetmj/1932200814
    • NLM

      Mirzaii B, Mokari FY, Ordinola DMC. Third homology of perfect central extensions [Internet]. Advanced Studies : Euro-Tbilisi Mathematical Journal. 2021 ; 14( 4): 61-80.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3251/asetmj/1932200814
    • Vancouver

      Mirzaii B, Mokari FY, Ordinola DMC. Third homology of perfect central extensions [Internet]. Advanced Studies : Euro-Tbilisi Mathematical Journal. 2021 ; 14( 4): 61-80.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3251/asetmj/1932200814
  • Source: Discrete Mathematics, Algorithms and Applications. Unidade: ICMC

    Subjects: ESPAÇOS FIBRADOS, HOMOTOPIA, ROBÓTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZAPATA, Cesar Augusto Ipanaque e GONZÁLEZ, Jesús. Multitasking collision-free optimal motion planning algorithms in Euclidean spaces. Discrete Mathematics, Algorithms and Applications, v. 12, n. 3, p. 2050040-1-2050040-19, 2020Tradução . . Disponível em: https://doi.org/10.1142/S1793830920500408. Acesso em: 11 nov. 2024.
    • APA

      Zapata, C. A. I., & González, J. (2020). Multitasking collision-free optimal motion planning algorithms in Euclidean spaces. Discrete Mathematics, Algorithms and Applications, 12( 3), 2050040-1-2050040-19. doi:10.1142/S1793830920500408
    • NLM

      Zapata CAI, González J. Multitasking collision-free optimal motion planning algorithms in Euclidean spaces [Internet]. Discrete Mathematics, Algorithms and Applications. 2020 ; 12( 3): 2050040-1-2050040-19.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1142/S1793830920500408
    • Vancouver

      Zapata CAI, González J. Multitasking collision-free optimal motion planning algorithms in Euclidean spaces [Internet]. Discrete Mathematics, Algorithms and Applications. 2020 ; 12( 3): 2050040-1-2050040-19.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1142/S1793830920500408
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: HOMOTOPIA, HOMOLOGIA, COHOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PENTEADO, Northon Canevari Leme e MANZOLI NETO, Oziride. Representing homotopy classes by maps with certain minimality root properties II. Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 473-482, 2020Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2020.056. Acesso em: 11 nov. 2024.
    • APA

      Penteado, N. C. L., & Manzoli Neto, O. (2020). Representing homotopy classes by maps with certain minimality root properties II. Topological Methods in Nonlinear Analysis, 56( 2), 473-482. doi:10.12775/TMNA.2020.056
    • NLM

      Penteado NCL, Manzoli Neto O. Representing homotopy classes by maps with certain minimality root properties II [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 473-482.[citado 2024 nov. 11 ] Available from: https://doi.org/10.12775/TMNA.2020.056
    • Vancouver

      Penteado NCL, Manzoli Neto O. Representing homotopy classes by maps with certain minimality root properties II [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 473-482.[citado 2024 nov. 11 ] Available from: https://doi.org/10.12775/TMNA.2020.056
  • Source: Chinese Annals of Mathematics, Series B. Unidade: IME

    Subjects: HOMOTOPIA, ESPAÇOS FIBRADOS, BRAIDS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John. A survey of the homotopy properties of inclusion of certain types of configuration spaces into the Cartesian product. Chinese Annals of Mathematics, Series B, v. 38, n. 6, p. 1223-1246, 2017Tradução . . Disponível em: https://doi.org/10.1007/s11401-017-1033-5. Acesso em: 11 nov. 2024.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2017). A survey of the homotopy properties of inclusion of certain types of configuration spaces into the Cartesian product. Chinese Annals of Mathematics, Series B, 38( 6), 1223-1246. doi:10.1007/s11401-017-1033-5
    • NLM

      Gonçalves DL, Guaschi J. A survey of the homotopy properties of inclusion of certain types of configuration spaces into the Cartesian product [Internet]. Chinese Annals of Mathematics, Series B. 2017 ; 38( 6): 1223-1246.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s11401-017-1033-5
    • Vancouver

      Gonçalves DL, Guaschi J. A survey of the homotopy properties of inclusion of certain types of configuration spaces into the Cartesian product [Internet]. Chinese Annals of Mathematics, Series B. 2017 ; 38( 6): 1223-1246.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s11401-017-1033-5
  • Source: Bulletin of the Belgian Mathematical Society : Simon Stevin. Unidade: ICMC

    Subjects: TOPOLOGIA ALGÉBRICA, COMPLEXOS CELULARES, HOMOTOPIA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAMPOS, José Eduardo Prado Pires de. String links with the same closure and group diagrams. Bulletin of the Belgian Mathematical Society : Simon Stevin, v. 24, n. 2, p. 161-174, 2017Tradução . . Disponível em: https://projecteuclid.org/euclid.bbms/1503453703. Acesso em: 11 nov. 2024.
    • APA

      Campos, J. E. P. P. de. (2017). String links with the same closure and group diagrams. Bulletin of the Belgian Mathematical Society : Simon Stevin, 24( 2), 161-174. Recuperado de https://projecteuclid.org/euclid.bbms/1503453703
    • NLM

      Campos JEPP de. String links with the same closure and group diagrams [Internet]. Bulletin of the Belgian Mathematical Society : Simon Stevin. 2017 ; 24( 2): 161-174.[citado 2024 nov. 11 ] Available from: https://projecteuclid.org/euclid.bbms/1503453703
    • Vancouver

      Campos JEPP de. String links with the same closure and group diagrams [Internet]. Bulletin of the Belgian Mathematical Society : Simon Stevin. 2017 ; 24( 2): 161-174.[citado 2024 nov. 11 ] Available from: https://projecteuclid.org/euclid.bbms/1503453703
  • Source: Journal of Dynamical and Control Systems. Unidade: ICMC

    Subjects: TEORIA DE SISTEMAS E CONTROLE, HOMOTOPIA, SEMIGRUPOS TOPOLÓGICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAWSON, Jimmie e KIZIL, Eyup. Homotopy path spaces for families of admissible paths. Journal of Dynamical and Control Systems, v. 23, n. 3, p. 635-654, 2017Tradução . . Disponível em: https://doi.org/10.1007/s10883-016-9346-3. Acesso em: 11 nov. 2024.
    • APA

      Lawson, J., & Kizil, E. (2017). Homotopy path spaces for families of admissible paths. Journal of Dynamical and Control Systems, 23( 3), 635-654. doi:10.1007/s10883-016-9346-3
    • NLM

      Lawson J, Kizil E. Homotopy path spaces for families of admissible paths [Internet]. Journal of Dynamical and Control Systems. 2017 ; 23( 3): 635-654.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10883-016-9346-3
    • Vancouver

      Lawson J, Kizil E. Homotopy path spaces for families of admissible paths [Internet]. Journal of Dynamical and Control Systems. 2017 ; 23( 3): 635-654.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10883-016-9346-3
  • Source: Journal of Knot Theory and its Ramifications. Unidade: ICMC

    Subjects: TOPOLOGIA ALGÉBRICA, HOMOTOPIA, COMPLEXOS CELULARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Juliana R. Theodoro de e MATTOS, Denise de. Ordering homotopy string links over surfaces. Journal of Knot Theory and its Ramifications, v. 24, p. 1650001-1-1650001-14, 2016Tradução . . Disponível em: https://doi.org/10.1142/S0218216516500012. Acesso em: 11 nov. 2024.
    • APA

      Lima, J. R. T. de, & Mattos, D. de. (2016). Ordering homotopy string links over surfaces. Journal of Knot Theory and its Ramifications, 24, 1650001-1-1650001-14. doi:10.1142/S0218216516500012
    • NLM

      Lima JRT de, Mattos D de. Ordering homotopy string links over surfaces [Internet]. Journal of Knot Theory and its Ramifications. 2016 ; 24 1650001-1-1650001-14.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1142/S0218216516500012
    • Vancouver

      Lima JRT de, Mattos D de. Ordering homotopy string links over surfaces [Internet]. Journal of Knot Theory and its Ramifications. 2016 ; 24 1650001-1-1650001-14.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1142/S0218216516500012
  • Source: Kybernetika. Unidade: ICMC

    Subjects: SISTEMAS DE CONTROLE, HOMOTOPIA, GRUPOS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AYALA, Víctor e KIZIL, Eyup. The covering semigroup of invariant control systems on Lie groups. Kybernetika, v. 52, n. 6, p. 837-847, 2016Tradução . . Disponível em: https://doi.org/10.14736/kyb-2016-6-0837. Acesso em: 11 nov. 2024.
    • APA

      Ayala, V., & Kizil, E. (2016). The covering semigroup of invariant control systems on Lie groups. Kybernetika, 52( 6), 837-847. doi:10.14736/kyb-2016-6-0837
    • NLM

      Ayala V, Kizil E. The covering semigroup of invariant control systems on Lie groups [Internet]. Kybernetika. 2016 ; 52( 6): 837-847.[citado 2024 nov. 11 ] Available from: https://doi.org/10.14736/kyb-2016-6-0837
    • Vancouver

      Ayala V, Kizil E. The covering semigroup of invariant control systems on Lie groups [Internet]. Kybernetika. 2016 ; 52( 6): 837-847.[citado 2024 nov. 11 ] Available from: https://doi.org/10.14736/kyb-2016-6-0837
  • Source: Proceedings of the Royal Society of Edinburgh. Unidade: ICMC

    Subjects: TOPOLOGIA ALGÉBRICA, HOMOTOPIA, HOMOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PENTEADO, Northon Canevari Leme e MANZOLI NETO, Oziride. Representing homotopy classes by maps with certain minimality root properties. Proceedings of the Royal Society of Edinburgh, v. 146A, n. 5, p. 1005-1015, 2016Tradução . . Disponível em: https://doi.org/10.1017/S030821051500075X. Acesso em: 11 nov. 2024.
    • APA

      Penteado, N. C. L., & Manzoli Neto, O. (2016). Representing homotopy classes by maps with certain minimality root properties. Proceedings of the Royal Society of Edinburgh, 146A( 5), 1005-1015. doi:10.1017/S030821051500075X
    • NLM

      Penteado NCL, Manzoli Neto O. Representing homotopy classes by maps with certain minimality root properties [Internet]. Proceedings of the Royal Society of Edinburgh. 2016 ; 146A( 5): 1005-1015.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1017/S030821051500075X
    • Vancouver

      Penteado NCL, Manzoli Neto O. Representing homotopy classes by maps with certain minimality root properties [Internet]. Proceedings of the Royal Society of Edinburgh. 2016 ; 146A( 5): 1005-1015.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1017/S030821051500075X
  • Source: Topology and its Applications. Unidade: IME

    Assunto: HOMOTOPIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e KELLY, M. R. Coincidence Wecken homotopies versus Wecken homotopies relative to a fixed homotopy in one of the maps II. Topology and its Applications, v. 159, n. 18, p. 3777\20133785, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2012.08.029. Acesso em: 11 nov. 2024.
    • APA

      Gonçalves, D. L., & Kelly, M. R. (2012). Coincidence Wecken homotopies versus Wecken homotopies relative to a fixed homotopy in one of the maps II. Topology and its Applications, 159( 18), 3777\20133785. doi:10.1016/j.topol.2012.08.029
    • NLM

      Gonçalves DL, Kelly MR. Coincidence Wecken homotopies versus Wecken homotopies relative to a fixed homotopy in one of the maps II [Internet]. Topology and its Applications. 2012 ; 159( 18): 3777\20133785.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.topol.2012.08.029
    • Vancouver

      Gonçalves DL, Kelly MR. Coincidence Wecken homotopies versus Wecken homotopies relative to a fixed homotopy in one of the maps II [Internet]. Topology and its Applications. 2012 ; 159( 18): 3777\20133785.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.topol.2012.08.029
  • Source: Annals of Global Analysis and Geometry. Unidade: ICMC

    Subjects: TOPOLOGIA-GEOMETRIA, HOMOTOPIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MELO, T. de e HARTMANN, L e SPREAFICO, Mauro Flávio. The analytic torsion of a disc. Annals of Global Analysis and Geometry, v. 42, n. 1, p. 29-59, 2012Tradução . . Disponível em: https://doi.org/10.1007/s10455-011-9300-2. Acesso em: 11 nov. 2024.
    • APA

      Melo, T. de, Hartmann, L., & Spreafico, M. F. (2012). The analytic torsion of a disc. Annals of Global Analysis and Geometry, 42( 1), 29-59. doi:10.1007/s10455-011-9300-2
    • NLM

      Melo T de, Hartmann L, Spreafico MF. The analytic torsion of a disc [Internet]. Annals of Global Analysis and Geometry. 2012 ; 42( 1): 29-59.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10455-011-9300-2
    • Vancouver

      Melo T de, Hartmann L, Spreafico MF. The analytic torsion of a disc [Internet]. Annals of Global Analysis and Geometry. 2012 ; 42( 1): 29-59.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10455-011-9300-2
  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: TOPOLOGIA-GEOMETRIA, HOMOTOPIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HARTMANN JUNIOR, Luiz Roberto e SPREAFICO, Mauro Flávio. The analytic torsion of a cone over an odd dimensional manifold. Journal of Geometry and Physics, v. 61, n. 3, p. 624-657, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2010.11.011. Acesso em: 11 nov. 2024.
    • APA

      Hartmann Junior, L. R., & Spreafico, M. F. (2011). The analytic torsion of a cone over an odd dimensional manifold. Journal of Geometry and Physics, 61( 3), 624-657. doi:10.1016/j.geomphys.2010.11.011
    • NLM

      Hartmann Junior LR, Spreafico MF. The analytic torsion of a cone over an odd dimensional manifold [Internet]. Journal of Geometry and Physics. 2011 ; 61( 3): 624-657.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.geomphys.2010.11.011
    • Vancouver

      Hartmann Junior LR, Spreafico MF. The analytic torsion of a cone over an odd dimensional manifold [Internet]. Journal of Geometry and Physics. 2011 ; 61( 3): 624-657.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.geomphys.2010.11.011
  • Source: Journal of Fixed Point Theory and Applications. Unidades: IME, ICMC

    Subjects: TOPOLOGIA-GEOMETRIA, HOMOTOPIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e SPREAFICO, Mauro Flávio e MANZOLI NETO, Oziride. The Borsuk-Ulam Theorem for homotopy spherical space forms. Journal of Fixed Point Theory and Applications, v. 9, n. 2, p. 285-294, 2011Tradução . . Disponível em: https://doi.org/10.1007/s11784-011-0049-9. Acesso em: 11 nov. 2024.
    • APA

      Gonçalves, D. L., Spreafico, M. F., & Manzoli Neto, O. (2011). The Borsuk-Ulam Theorem for homotopy spherical space forms. Journal of Fixed Point Theory and Applications, 9( 2), 285-294. doi:10.1007/s11784-011-0049-9
    • NLM

      Gonçalves DL, Spreafico MF, Manzoli Neto O. The Borsuk-Ulam Theorem for homotopy spherical space forms [Internet]. Journal of Fixed Point Theory and Applications. 2011 ; 9( 2): 285-294.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s11784-011-0049-9
    • Vancouver

      Gonçalves DL, Spreafico MF, Manzoli Neto O. The Borsuk-Ulam Theorem for homotopy spherical space forms [Internet]. Journal of Fixed Point Theory and Applications. 2011 ; 9( 2): 285-294.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s11784-011-0049-9
  • Source: Osaka Journal of Mathematics. Unidade: ICMC

    Subjects: TOPOLOGIA-GEOMETRIA, HOMOTOPIA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SPREAFICO, Mauro Flávio. Zeta determinant and operator determinants. Osaka Journal of Mathematics, v. 48, n. 1, p. 41-50, 2011Tradução . . Acesso em: 11 nov. 2024.
    • APA

      Spreafico, M. F. (2011). Zeta determinant and operator determinants. Osaka Journal of Mathematics, 48( 1), 41-50.
    • NLM

      Spreafico MF. Zeta determinant and operator determinants. Osaka Journal of Mathematics. 2011 ; 48( 1): 41-50.[citado 2024 nov. 11 ]
    • Vancouver

      Spreafico MF. Zeta determinant and operator determinants. Osaka Journal of Mathematics. 2011 ; 48( 1): 41-50.[citado 2024 nov. 11 ]

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024