A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
HAMANN, Pedro Ricardo Vieira et al. Aspergillus fumigatus Lytic Polysaccharide Monooxygenase AfLPMO9D: biochemical properties and photoactivation of a multi-domain AA9 enzyme. Processes, v. No 2023, n. 11, p. 3230-1-3230-16, 2023Tradução . . Disponível em: https://doi.org/10.3390/pr11113230. Acesso em: 09 nov. 2024.
APA
Hamann, P. R. V., Vacilotto, M. M., Segato, F., & Polikarpov, I. (2023). Aspergillus fumigatus Lytic Polysaccharide Monooxygenase AfLPMO9D: biochemical properties and photoactivation of a multi-domain AA9 enzyme. Processes, No 2023( 11), 3230-1-3230-16. doi:10.3390/pr11113230
NLM
Hamann PRV, Vacilotto MM, Segato F, Polikarpov I. Aspergillus fumigatus Lytic Polysaccharide Monooxygenase AfLPMO9D: biochemical properties and photoactivation of a multi-domain AA9 enzyme [Internet]. Processes. 2023 ; No 2023( 11): 3230-1-3230-16.[citado 2024 nov. 09 ] Available from: https://doi.org/10.3390/pr11113230
Vancouver
Hamann PRV, Vacilotto MM, Segato F, Polikarpov I. Aspergillus fumigatus Lytic Polysaccharide Monooxygenase AfLPMO9D: biochemical properties and photoactivation of a multi-domain AA9 enzyme [Internet]. Processes. 2023 ; No 2023( 11): 3230-1-3230-16.[citado 2024 nov. 09 ] Available from: https://doi.org/10.3390/pr11113230
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
CAMBRAIA, Marcus V. S. et al. Process optimization for enzymatic production of a valuable biomass-based ester from levulinic acid. Bioprocess and biosystems engineering, v. 46, p. 53-67, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00449-022-02813-w. Acesso em: 09 nov. 2024.
APA
Cambraia, M. V. S., Barbosa, M. S., Soares, C. M. F., Carvalho, A. K. F. de, & Mendes, A. A. (2023). Process optimization for enzymatic production of a valuable biomass-based ester from levulinic acid. Bioprocess and biosystems engineering, 46, 53-67. doi:10.1007/s00449-022-02813-w
NLM
Cambraia MVS, Barbosa MS, Soares CMF, Carvalho AKF de, Mendes AA. Process optimization for enzymatic production of a valuable biomass-based ester from levulinic acid [Internet]. Bioprocess and biosystems engineering. 2023 ;46 53-67.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s00449-022-02813-w
Vancouver
Cambraia MVS, Barbosa MS, Soares CMF, Carvalho AKF de, Mendes AA. Process optimization for enzymatic production of a valuable biomass-based ester from levulinic acid [Internet]. Bioprocess and biosystems engineering. 2023 ;46 53-67.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s00449-022-02813-w
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
BIANCHINI, Italo de Andrade et al. Relation of xylitol formation and lignocellulose degradation in yeast. Applied microbiology and biotechnology, v. 107, p. 3143-3151, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00253-023-12495-3. Acesso em: 09 nov. 2024.
APA
Bianchini, I. de A., Jofre, F. M., Queiroz, S. de S., Lacerda, T. M., & Felipe, M. das G. de A. (2023). Relation of xylitol formation and lignocellulose degradation in yeast. Applied microbiology and biotechnology, 107, 3143-3151. doi:10.1007/s00253-023-12495-3
NLM
Bianchini I de A, Jofre FM, Queiroz S de S, Lacerda TM, Felipe M das G de A. Relation of xylitol formation and lignocellulose degradation in yeast [Internet]. Applied microbiology and biotechnology. 2023 ;107 3143-3151.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s00253-023-12495-3
Vancouver
Bianchini I de A, Jofre FM, Queiroz S de S, Lacerda TM, Felipe M das G de A. Relation of xylitol formation and lignocellulose degradation in yeast [Internet]. Applied microbiology and biotechnology. 2023 ;107 3143-3151.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s00253-023-12495-3
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
GANDINI, Alessandro e LACERDA, Talita Martins. Monomers and Macromolecular Materials from Renewable Resources: State of the Art and Perspectives. Molecules, v. 27, n. art. 159, 2022Tradução . . Disponível em: https://doi.org/10.3390/molecules27010159. Acesso em: 09 nov. 2024.
APA
Gandini, A., & Lacerda, T. M. (2022). Monomers and Macromolecular Materials from Renewable Resources: State of the Art and Perspectives. Molecules, 27( art. 159). doi:10.3390/molecules27010159
NLM
Gandini A, Lacerda TM. Monomers and Macromolecular Materials from Renewable Resources: State of the Art and Perspectives [Internet]. Molecules. 2022 ;27( art. 159):[citado 2024 nov. 09 ] Available from: https://doi.org/10.3390/molecules27010159
Vancouver
Gandini A, Lacerda TM. Monomers and Macromolecular Materials from Renewable Resources: State of the Art and Perspectives [Internet]. Molecules. 2022 ;27( art. 159):[citado 2024 nov. 09 ] Available from: https://doi.org/10.3390/molecules27010159
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
ZORN, Savienne Maria Fiorentini Elerbrock et al. Liquens oleaginosos como alternativa sustentável para a produção de biodiesel via transesterificação in situ. 2022, Anais.. [S.l.]: Escola de Engenharia de Lorena, Universidade de São Paulo, 2022. p. 1. Disponível em: www.even3.com.br/Anais/wendeq/480737-LIQUENS-OLEAGINOSOS-COMO-ALTERNATIVA-SUSTENTAVEL-PARA-A-PRODUCAO-DE-BIODIESEL-VIA-TRANSESTERIFICACAO-IN-SITU. Acesso em: 09 nov. 2024.
APA
Zorn, S. M. F. E., Bento, H. B. S., Carvalho, A. K. F. de, Pedro, G. A., Da Rós, P. C. M., & Silva, M. B. (2022). Liquens oleaginosos como alternativa sustentável para a produção de biodiesel via transesterificação in situ. In Resumos (p. 1). Escola de Engenharia de Lorena, Universidade de São Paulo. Recuperado de www.even3.com.br/Anais/wendeq/480737-LIQUENS-OLEAGINOSOS-COMO-ALTERNATIVA-SUSTENTAVEL-PARA-A-PRODUCAO-DE-BIODIESEL-VIA-TRANSESTERIFICACAO-IN-SITU
NLM
Zorn SMFE, Bento HBS, Carvalho AKF de, Pedro GA, Da Rós PCM, Silva MB. Liquens oleaginosos como alternativa sustentável para a produção de biodiesel via transesterificação in situ [Internet]. Resumos. 2022 ;1.[citado 2024 nov. 09 ] Available from: www.even3.com.br/Anais/wendeq/480737-LIQUENS-OLEAGINOSOS-COMO-ALTERNATIVA-SUSTENTAVEL-PARA-A-PRODUCAO-DE-BIODIESEL-VIA-TRANSESTERIFICACAO-IN-SITU
Vancouver
Zorn SMFE, Bento HBS, Carvalho AKF de, Pedro GA, Da Rós PCM, Silva MB. Liquens oleaginosos como alternativa sustentável para a produção de biodiesel via transesterificação in situ [Internet]. Resumos. 2022 ;1.[citado 2024 nov. 09 ] Available from: www.even3.com.br/Anais/wendeq/480737-LIQUENS-OLEAGINOSOS-COMO-ALTERNATIVA-SUSTENTAVEL-PARA-A-PRODUCAO-DE-BIODIESEL-VIA-TRANSESTERIFICACAO-IN-SITU
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
QUEIROZ, Sarah de Souza et al. Fermentative Production of Xylitol from Various Lignocellulosic Hydrolysates. Current Advances in Biotechnological Production of Xylitol Fermentative: Production of Xylitol. Tradução . [S.l.]: Springer Cham, 2022. p. 51-66. Disponível em: https://doi.org/10.1007/978-3-031-04942-2_3. Acesso em: 09 nov. 2024.
APA
Queiroz, S. de S., Jofre, F. M., Bianchini, I. de A., Bordini, F. W., Boaes, T. da S., Chandel, A. K., & Felipe, M. das G. de A. (2022). Fermentative Production of Xylitol from Various Lignocellulosic Hydrolysates. In Current Advances in Biotechnological Production of Xylitol Fermentative: Production of Xylitol (p. 51-66). Springer Cham. doi:10.1007/978-3-031-04942-2_3
NLM
Queiroz S de S, Jofre FM, Bianchini I de A, Bordini FW, Boaes T da S, Chandel AK, Felipe M das G de A. Fermentative Production of Xylitol from Various Lignocellulosic Hydrolysates [Internet]. In: Current Advances in Biotechnological Production of Xylitol Fermentative: Production of Xylitol. Springer Cham; 2022. p. 51-66.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/978-3-031-04942-2_3
Vancouver
Queiroz S de S, Jofre FM, Bianchini I de A, Bordini FW, Boaes T da S, Chandel AK, Felipe M das G de A. Fermentative Production of Xylitol from Various Lignocellulosic Hydrolysates [Internet]. In: Current Advances in Biotechnological Production of Xylitol Fermentative: Production of Xylitol. Springer Cham; 2022. p. 51-66.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/978-3-031-04942-2_3
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
VELASCO, Josman et al. Light boosts the activity of novel LPMO from aspergillus fumigatus leading to oxidative cleavage of cellulose and hemicellulose. ACS Sustainable Chemistry and Engineering, v. 10, n. 50, p. 16969-16984, 2022Tradução . . Disponível em: https://doi.org/10.1021/acssuschemeng.2c06281. Acesso em: 09 nov. 2024.
APA
Velasco, J., Sepulchro, A. G. V., Higasi, P. M. R., Pellegrini, V. de O. A., Cannella, D., Oliveira, L. C. de, et al. (2022). Light boosts the activity of novel LPMO from aspergillus fumigatus leading to oxidative cleavage of cellulose and hemicellulose. ACS Sustainable Chemistry and Engineering, 10( 50), 16969-16984. doi:10.1021/acssuschemeng.2c06281
NLM
Velasco J, Sepulchro AGV, Higasi PMR, Pellegrini V de OA, Cannella D, Oliveira LC de, Polikarpov I, Segato F. Light boosts the activity of novel LPMO from aspergillus fumigatus leading to oxidative cleavage of cellulose and hemicellulose [Internet]. ACS Sustainable Chemistry and Engineering. 2022 ; 10( 50): 16969-16984.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1021/acssuschemeng.2c06281
Vancouver
Velasco J, Sepulchro AGV, Higasi PMR, Pellegrini V de OA, Cannella D, Oliveira LC de, Polikarpov I, Segato F. Light boosts the activity of novel LPMO from aspergillus fumigatus leading to oxidative cleavage of cellulose and hemicellulose [Internet]. ACS Sustainable Chemistry and Engineering. 2022 ; 10( 50): 16969-16984.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1021/acssuschemeng.2c06281
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
ROMÃO, Érica Leonor et al. Torrefaction as a Chlorine Reduction Process of Brazilian Eucalyptus sp. for Use as Biofuel. BioEnergy Research, v. 16, p. 448-456, 2022Tradução . . Disponível em: https://doi.org/10.1007/s12155-022-10429-x. Acesso em: 09 nov. 2024.
APA
Romão, É. L., Silva, J. M. da, Luz, N. V. dos S., & Conte, R. A. (2022). Torrefaction as a Chlorine Reduction Process of Brazilian Eucalyptus sp. for Use as Biofuel. BioEnergy Research, 16, 448-456. doi:10.1007/s12155-022-10429-x
NLM
Romão ÉL, Silva JM da, Luz NV dos S, Conte RA. Torrefaction as a Chlorine Reduction Process of Brazilian Eucalyptus sp. for Use as Biofuel [Internet]. BioEnergy Research. 2022 ;16 448-456.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s12155-022-10429-x
Vancouver
Romão ÉL, Silva JM da, Luz NV dos S, Conte RA. Torrefaction as a Chlorine Reduction Process of Brazilian Eucalyptus sp. for Use as Biofuel [Internet]. BioEnergy Research. 2022 ;16 448-456.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s12155-022-10429-x
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
CASTRO, Tarsila F. de et al. Biotechnological valorization of mycelium-bound lipase of Penicillium purpurogenum in hydrolysis of high content lauric acid vegetable oils. Process safety and environmental protection, n. , p. 498-505, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.psep.2022.03.013. Acesso em: 09 nov. 2024.
APA
Castro, T. F. de, Cortez, D. V., Gonçalves, D. B., Bento, H. B. S., Gonçalves, R. L. N., Costa-Silva, T. A., et al. (2022). Biotechnological valorization of mycelium-bound lipase of Penicillium purpurogenum in hydrolysis of high content lauric acid vegetable oils. Process safety and environmental protection, ( ), 498-505. doi:10.1016/j.psep.2022.03.013
NLM
Castro TF de, Cortez DV, Gonçalves DB, Bento HBS, Gonçalves RLN, Costa-Silva TA, Gambarato BC, Castro HF de, Carvalho AKF de. Biotechnological valorization of mycelium-bound lipase of Penicillium purpurogenum in hydrolysis of high content lauric acid vegetable oils [Internet]. Process safety and environmental protection. 2022 ;( ): 498-505.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.psep.2022.03.013
Vancouver
Castro TF de, Cortez DV, Gonçalves DB, Bento HBS, Gonçalves RLN, Costa-Silva TA, Gambarato BC, Castro HF de, Carvalho AKF de. Biotechnological valorization of mycelium-bound lipase of Penicillium purpurogenum in hydrolysis of high content lauric acid vegetable oils [Internet]. Process safety and environmental protection. 2022 ;( ): 498-505.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.psep.2022.03.013
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
HALLERAKER, Hilde Vik et al. The Consistency of Yields and Chemical Composition of HTL Bio-Oils from Lignins Produced by Different Preprocessing Technologies. Energies, v. 15, n. 13, p. 1-21, 2022Tradução . . Disponível em: https://doi.org/10.3390/en15134707. Acesso em: 09 nov. 2024.
APA
Halleraker, H. V., Kalogiannis, K., Lappas, A., CASTRO, R. A. F. A. E. L. C. U. N. H. A. D. E. A. S. S. I. S., Roberto, I. C., Mussatto, S. I., & Barth, T. (2022). The Consistency of Yields and Chemical Composition of HTL Bio-Oils from Lignins Produced by Different Preprocessing Technologies. Energies, 15( 13), 1-21. doi:10.3390/en15134707
NLM
Halleraker HV, Kalogiannis K, Lappas A, CASTRO RAFAELCUNHADEASSIS, Roberto IC, Mussatto SI, Barth T. The Consistency of Yields and Chemical Composition of HTL Bio-Oils from Lignins Produced by Different Preprocessing Technologies [Internet]. Energies. 2022 ;15( 13): 1-21.[citado 2024 nov. 09 ] Available from: https://doi.org/10.3390/en15134707
Vancouver
Halleraker HV, Kalogiannis K, Lappas A, CASTRO RAFAELCUNHADEASSIS, Roberto IC, Mussatto SI, Barth T. The Consistency of Yields and Chemical Composition of HTL Bio-Oils from Lignins Produced by Different Preprocessing Technologies [Internet]. Energies. 2022 ;15( 13): 1-21.[citado 2024 nov. 09 ] Available from: https://doi.org/10.3390/en15134707
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
ANTUNES, Felipe Antônio Fernandes et al. Microbial Biotechnology for Renewable and Sustainable Energy: The Current Status of Biogas, Biodiesel, and Bioethanol in Brazil. Microbial Biotechnology for Renewable and Sustainable Energy. Clean Energy Production Technologies. Tradução . [S.l.]: Springer Nature Singapore Pte Ltd., 2022. p. 255-296. Disponível em: https://doi.org/10.1007/978-981-16-3852-7_10. Acesso em: 09 nov. 2024.
APA
Antunes, F. A. F., Flumignan, D. L., Santos, L. K., Dussán, K. J., Santos, J. C. dos, Silva, S. S. da, et al. (2022). Microbial Biotechnology for Renewable and Sustainable Energy: The Current Status of Biogas, Biodiesel, and Bioethanol in Brazil. In Microbial Biotechnology for Renewable and Sustainable Energy. Clean Energy Production Technologies (p. 255-296). Springer Nature Singapore Pte Ltd. doi:10.1007/978-981-16-3852-7_10
NLM
Antunes FAF, Flumignan DL, Santos LK, Dussán KJ, Santos JC dos, Silva SS da, Ingle AP, Rocha TM, Perez AH, Philippini RR, Martiniano SE, Sanchez-Muñoz S, Pradro CA, Paula AV, Silva DDV. Microbial Biotechnology for Renewable and Sustainable Energy: The Current Status of Biogas, Biodiesel, and Bioethanol in Brazil [Internet]. In: Microbial Biotechnology for Renewable and Sustainable Energy. Clean Energy Production Technologies. Springer Nature Singapore Pte Ltd.; 2022. p. 255-296.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/978-981-16-3852-7_10
Vancouver
Antunes FAF, Flumignan DL, Santos LK, Dussán KJ, Santos JC dos, Silva SS da, Ingle AP, Rocha TM, Perez AH, Philippini RR, Martiniano SE, Sanchez-Muñoz S, Pradro CA, Paula AV, Silva DDV. Microbial Biotechnology for Renewable and Sustainable Energy: The Current Status of Biogas, Biodiesel, and Bioethanol in Brazil [Internet]. In: Microbial Biotechnology for Renewable and Sustainable Energy. Clean Energy Production Technologies. Springer Nature Singapore Pte Ltd.; 2022. p. 255-296.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/978-981-16-3852-7_10
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
CHANDEL, Heena et al. Biotechnological advances in biomass pretreatment for bio-renewable production through nanotechnological intervention. Biomass conversion and biorefinery, p. 1-23, 2022Tradução . . Disponível em: https://doi.org/10.1007/s13399-022-02746-0. Acesso em: 09 nov. 2024.
APA
Chandel, H., Kumar, P., Chandel, A. K., & Verma, M. L. (2022). Biotechnological advances in biomass pretreatment for bio-renewable production through nanotechnological intervention. Biomass conversion and biorefinery, 1-23. doi:10.1007/s13399-022-02746-0
NLM
Chandel H, Kumar P, Chandel AK, Verma ML. Biotechnological advances in biomass pretreatment for bio-renewable production through nanotechnological intervention [Internet]. Biomass conversion and biorefinery. 2022 ;1-23.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s13399-022-02746-0
Vancouver
Chandel H, Kumar P, Chandel AK, Verma ML. Biotechnological advances in biomass pretreatment for bio-renewable production through nanotechnological intervention [Internet]. Biomass conversion and biorefinery. 2022 ;1-23.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s13399-022-02746-0
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
INGLE, Avinash P et al. Nanotechnological Interventions for Sustainable Production of Microbial Biofuel and Bioenergy. Microbial Biotechnology for Renewable and Sustainable Energy. Clean Energy Production Technologies. Tradução . [S.l.]: Springer Nature Singapore Pte Ltd, 2022. p. 191-226. Disponível em: https://doi.org/10.1007/978-981-16-3852-7_8. Acesso em: 09 nov. 2024.
APA
Ingle, A. P., Silva, G. M., Sanchez-Muñoz, S., Ribeaux, D. R., Oliveira, E. M. D., Santos, J. C. dos, et al. (2022). Nanotechnological Interventions for Sustainable Production of Microbial Biofuel and Bioenergy. In Microbial Biotechnology for Renewable and Sustainable Energy. Clean Energy Production Technologies. (p. 191-226). Springer Nature Singapore Pte Ltd. doi:10.1007/978-981-16-3852-7_8
NLM
Ingle AP, Silva GM, Sanchez-Muñoz S, Ribeaux DR, Oliveira EMD, Santos JC dos, Silva SS da, Antunes FAF, Paula AV, Flumignan DL, Terán-Hilares R, Philippini RR, Martiniano SE, Abdeshahian P, Perez AH. Nanotechnological Interventions for Sustainable Production of Microbial Biofuel and Bioenergy [Internet]. In: Microbial Biotechnology for Renewable and Sustainable Energy. Clean Energy Production Technologies. Springer Nature Singapore Pte Ltd; 2022. p. 191-226.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/978-981-16-3852-7_8
Vancouver
Ingle AP, Silva GM, Sanchez-Muñoz S, Ribeaux DR, Oliveira EMD, Santos JC dos, Silva SS da, Antunes FAF, Paula AV, Flumignan DL, Terán-Hilares R, Philippini RR, Martiniano SE, Abdeshahian P, Perez AH. Nanotechnological Interventions for Sustainable Production of Microbial Biofuel and Bioenergy [Internet]. In: Microbial Biotechnology for Renewable and Sustainable Energy. Clean Energy Production Technologies. Springer Nature Singapore Pte Ltd; 2022. p. 191-226.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/978-981-16-3852-7_8
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
FANELLI, Amanda et al. Overexpression of a sugarcane BAHD acyltransferase alters hydroxycinnamate content in maize cell wall. Frontiers in Plant Science, v. 12, 2021Tradução . . Disponível em: https://doi.org/10.3389/fpls.2021.626168. Acesso em: 09 nov. 2024.
APA
Fanelli, A., Rancour, D. M., Sullivan, M., Karlen, S. D., Ralph, J., Pachón, D. M. R., et al. (2021). Overexpression of a sugarcane BAHD acyltransferase alters hydroxycinnamate content in maize cell wall. Frontiers in Plant Science, 12. doi:10.3389/fpls.2021.626168
NLM
Fanelli A, Rancour DM, Sullivan M, Karlen SD, Ralph J, Pachón DMR, Vicentini R, Silva T da F, Ferraz AL, Hatfield RD, Romanel EA. Overexpression of a sugarcane BAHD acyltransferase alters hydroxycinnamate content in maize cell wall [Internet]. Frontiers in Plant Science. 2021 ; 12[citado 2024 nov. 09 ] Available from: https://doi.org/10.3389/fpls.2021.626168
Vancouver
Fanelli A, Rancour DM, Sullivan M, Karlen SD, Ralph J, Pachón DMR, Vicentini R, Silva T da F, Ferraz AL, Hatfield RD, Romanel EA. Overexpression of a sugarcane BAHD acyltransferase alters hydroxycinnamate content in maize cell wall [Internet]. Frontiers in Plant Science. 2021 ; 12[citado 2024 nov. 09 ] Available from: https://doi.org/10.3389/fpls.2021.626168
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
CHANDEL, Anuj Kumar et al. Brazilian biorefineries from second generation biomass: critical insights from industry and future perspectives. Biofuels Bioproducts & Biorefining-Biofpr, v. 15, n. 4, p. 1190-1208, 2021Tradução . . Disponível em: https://doi.org/10.1002/bbb.2234. Acesso em: 09 nov. 2024.
APA
Chandel, A. K., Forte, M. B. S., Gonçalves, I. S., Milessi, T. S., Arruda, P. V. de, Carvalho, W., & Mussatto, S. I. (2021). Brazilian biorefineries from second generation biomass: critical insights from industry and future perspectives. Biofuels Bioproducts & Biorefining-Biofpr, 15( 4), 1190-1208. doi:10.1002/bbb.2234
NLM
Chandel AK, Forte MBS, Gonçalves IS, Milessi TS, Arruda PV de, Carvalho W, Mussatto SI. Brazilian biorefineries from second generation biomass: critical insights from industry and future perspectives [Internet]. Biofuels Bioproducts & Biorefining-Biofpr. 2021 ;15( 4): 1190-1208.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1002/bbb.2234
Vancouver
Chandel AK, Forte MBS, Gonçalves IS, Milessi TS, Arruda PV de, Carvalho W, Mussatto SI. Brazilian biorefineries from second generation biomass: critical insights from industry and future perspectives [Internet]. Biofuels Bioproducts & Biorefining-Biofpr. 2021 ;15( 4): 1190-1208.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1002/bbb.2234
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
VELASCO, Josman et al. Comparative analysis of two recombinant LPMOs from Aspergillus fumigatus and their effects on sugarcane bagasse saccharification. Enzyme and Microbial Technology, v. 144, p. 109746-1-109746-11 1 + supplementary data, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.enzmictec.2021.109746. Acesso em: 09 nov. 2024.
APA
Velasco, J., Pellegrini, V. de O. A., Sepulchro, A. G. V., Kadowakic, M. A. S., Espirito Santo, M. C. do, Polikarpov, I., & Segato, F. (2021). Comparative analysis of two recombinant LPMOs from Aspergillus fumigatus and their effects on sugarcane bagasse saccharification. Enzyme and Microbial Technology, 144, 109746-1-109746-11 1 + supplementary data. doi:10.1016/j.enzmictec.2021.109746
NLM
Velasco J, Pellegrini V de OA, Sepulchro AGV, Kadowakic MAS, Espirito Santo MC do, Polikarpov I, Segato F. Comparative analysis of two recombinant LPMOs from Aspergillus fumigatus and their effects on sugarcane bagasse saccharification [Internet]. Enzyme and Microbial Technology. 2021 ; 144 109746-1-109746-11 1 + supplementary data.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.enzmictec.2021.109746
Vancouver
Velasco J, Pellegrini V de OA, Sepulchro AGV, Kadowakic MAS, Espirito Santo MC do, Polikarpov I, Segato F. Comparative analysis of two recombinant LPMOs from Aspergillus fumigatus and their effects on sugarcane bagasse saccharification [Internet]. Enzyme and Microbial Technology. 2021 ; 144 109746-1-109746-11 1 + supplementary data.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.enzmictec.2021.109746
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
SANTOS, Wallyson Ribeiro et al. Semi-continuous cultivation of Chlorella minutissima in landfill leachate: Effect of process variables on biomass composition. Waste and Biomass Valorization, v. 13, p. 1627–1638, 2021Tradução . . Disponível em: https://doi.org/10.1007/s12649-021-01614-8. Acesso em: 09 nov. 2024.
APA
Santos, W. R., Pereira, P., Roma, C., Santos, J. C. dos, Tagliaferro, G. V., Silva, M. B., & Guimarães, D. H. P. (2021). Semi-continuous cultivation of Chlorella minutissima in landfill leachate: Effect of process variables on biomass composition. Waste and Biomass Valorization, 13, 1627–1638. doi:10.1007/s12649-021-01614-8
NLM
Santos WR, Pereira P, Roma C, Santos JC dos, Tagliaferro GV, Silva MB, Guimarães DHP. Semi-continuous cultivation of Chlorella minutissima in landfill leachate: Effect of process variables on biomass composition [Internet]. Waste and Biomass Valorization. 2021 ;13 1627–1638.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s12649-021-01614-8
Vancouver
Santos WR, Pereira P, Roma C, Santos JC dos, Tagliaferro GV, Silva MB, Guimarães DHP. Semi-continuous cultivation of Chlorella minutissima in landfill leachate: Effect of process variables on biomass composition [Internet]. Waste and Biomass Valorization. 2021 ;13 1627–1638.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s12649-021-01614-8
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
SCHMITT, CAROLINE CARRIEL et al. Thermochemical and Catalytic Conversion Technologies for the Development of Brazilian Biomass Utilization. Catalysts, n. , p. 1549-, 2021Tradução . . Disponível em: https://doi.org/10.3390/catal11121549. Acesso em: 09 nov. 2024.
APA
SCHMITT, C. A. R. O. L. I. N. E. C. A. R. R. I. E. L., Raffelt, K., DAHMEN, N. I. C. O. L. A. U. S., FONSECA, F. R. E. D. E. R. I. C. O. G. O. M. E. S., FRAGA, M. A. R. I. A. N. A. M. C. A. M. P. O. S., WISNIEWSKI, A. L. B. E. R. T. O., et al. (2021). Thermochemical and Catalytic Conversion Technologies for the Development of Brazilian Biomass Utilization. Catalysts, ( ), 1549-. doi:10.3390/catal11121549
NLM
SCHMITT CAROLINECARRIEL, Raffelt K, DAHMEN NICOLAUS, FONSECA FREDERICOGOMES, FRAGA MARIANAMCAMPOS, WISNIEWSKI ALBERTO, KARP SUSAN, MELLO JOSÉ ÁLVAROHENRIQUE, Rodrigues RCLB, MOREIRA RENATA, HIRAYAMA DANILOEIJI. Thermochemical and Catalytic Conversion Technologies for the Development of Brazilian Biomass Utilization [Internet]. Catalysts. 2021 ;( ): 1549-.[citado 2024 nov. 09 ] Available from: https://doi.org/10.3390/catal11121549
Vancouver
SCHMITT CAROLINECARRIEL, Raffelt K, DAHMEN NICOLAUS, FONSECA FREDERICOGOMES, FRAGA MARIANAMCAMPOS, WISNIEWSKI ALBERTO, KARP SUSAN, MELLO JOSÉ ÁLVAROHENRIQUE, Rodrigues RCLB, MOREIRA RENATA, HIRAYAMA DANILOEIJI. Thermochemical and Catalytic Conversion Technologies for the Development of Brazilian Biomass Utilization [Internet]. Catalysts. 2021 ;( ): 1549-.[citado 2024 nov. 09 ] Available from: https://doi.org/10.3390/catal11121549
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
ROMÃO, Érica Leonor e CONTE, Rosa Ana. Energy gains of Eucalyptus by torrefaction process. Maderas-Ciencia y Tecnologia, v. 23, n. 3, p. 1-6, 2021Tradução . . Disponível em: https://doi.org/10.4067/S0718-221X2021000100403. Acesso em: 09 nov. 2024.
APA
Romão, É. L., & Conte, R. A. (2021). Energy gains of Eucalyptus by torrefaction process. Maderas-Ciencia y Tecnologia, 23( 3), 1-6. doi:10.4067/S0718-221X2021000100403
NLM
Romão ÉL, Conte RA. Energy gains of Eucalyptus by torrefaction process [Internet]. Maderas-Ciencia y Tecnologia. 2021 ;23( 3): 1-6.[citado 2024 nov. 09 ] Available from: https://doi.org/10.4067/S0718-221X2021000100403
Vancouver
Romão ÉL, Conte RA. Energy gains of Eucalyptus by torrefaction process [Internet]. Maderas-Ciencia y Tecnologia. 2021 ;23( 3): 1-6.[citado 2024 nov. 09 ] Available from: https://doi.org/10.4067/S0718-221X2021000100403
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
HANS, Meenu et al. Production of first- and second-generation ethanol for use in alcohol-based hand sanitizers and disinfectants in India. Biomass conversion and biorefinery, v. 13, p. 7423–7440, 2021Tradução . . Disponível em: https://doi.org/10.1007/s13399-021-01553-3. Acesso em: 09 nov. 2024.
APA
Hans, M., Lugani, Y., Chandel, A. K., Rai, R., & Kumar, S. (2021). Production of first- and second-generation ethanol for use in alcohol-based hand sanitizers and disinfectants in India. Biomass conversion and biorefinery, 13, 7423–7440. doi:10.1007/s13399-021-01553-3
NLM
Hans M, Lugani Y, Chandel AK, Rai R, Kumar S. Production of first- and second-generation ethanol for use in alcohol-based hand sanitizers and disinfectants in India [Internet]. Biomass conversion and biorefinery. 2021 ;13 7423–7440.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s13399-021-01553-3
Vancouver
Hans M, Lugani Y, Chandel AK, Rai R, Kumar S. Production of first- and second-generation ethanol for use in alcohol-based hand sanitizers and disinfectants in India [Internet]. Biomass conversion and biorefinery. 2021 ;13 7423–7440.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s13399-021-01553-3