Filtros : "ATRATORES" "Vargas, Edson" Removido: "Indiana University Mathematics Journal" Limpar

Filtros



Refine with date range


  • Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, ATRATORES, MEDIDA DE LEBESGUE, MEDIDA E INTEGRAÇÃO, TOPOLOGIA ALGÉBRICA

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, André Ribeiro de Resende. Existência de medidas invariantes absolutamente contínuas para recobrimentos críticos do círculo com combinatória Fibonacci generalizada. 2017. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2017. Disponível em: https://teses.usp.br/teses/disponiveis/45/45132/tde-20230727-113113/. Acesso em: 04 nov. 2024.
    • APA

      Alves, A. R. de R. (2017). Existência de medidas invariantes absolutamente contínuas para recobrimentos críticos do círculo com combinatória Fibonacci generalizada (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://teses.usp.br/teses/disponiveis/45/45132/tde-20230727-113113/
    • NLM

      Alves AR de R. Existência de medidas invariantes absolutamente contínuas para recobrimentos críticos do círculo com combinatória Fibonacci generalizada [Internet]. 2017 ;[citado 2024 nov. 04 ] Available from: https://teses.usp.br/teses/disponiveis/45/45132/tde-20230727-113113/
    • Vancouver

      Alves AR de R. Existência de medidas invariantes absolutamente contínuas para recobrimentos críticos do círculo com combinatória Fibonacci generalizada [Internet]. 2017 ;[citado 2024 nov. 04 ] Available from: https://teses.usp.br/teses/disponiveis/45/45132/tde-20230727-113113/
  • Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, ATRATORES

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Tiago Estrela de. Medidas invariantes para recobrimentos críticos do círculo. 2014. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2014. Disponível em: https://teses.usp.br/teses/disponiveis/45/45131/tde-20230727-113614/. Acesso em: 04 nov. 2024.
    • APA

      Oliveira, T. E. de. (2014). Medidas invariantes para recobrimentos críticos do círculo (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://teses.usp.br/teses/disponiveis/45/45131/tde-20230727-113614/
    • NLM

      Oliveira TE de. Medidas invariantes para recobrimentos críticos do círculo [Internet]. 2014 ;[citado 2024 nov. 04 ] Available from: https://teses.usp.br/teses/disponiveis/45/45131/tde-20230727-113614/
    • Vancouver

      Oliveira TE de. Medidas invariantes para recobrimentos críticos do círculo [Internet]. 2014 ;[citado 2024 nov. 04 ] Available from: https://teses.usp.br/teses/disponiveis/45/45131/tde-20230727-113614/
  • Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, ATRATORES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NASCIMENTO, Márcio Lima do. Dinâmica de recobrimentos do círculo com pontos de inflexão. 2001. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2001. Disponível em: https://teses.usp.br/teses/disponiveis/45/45132/tde-20220712-115429/. Acesso em: 04 nov. 2024.
    • APA

      Nascimento, M. L. do. (2001). Dinâmica de recobrimentos do círculo com pontos de inflexão (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://teses.usp.br/teses/disponiveis/45/45132/tde-20220712-115429/
    • NLM

      Nascimento ML do. Dinâmica de recobrimentos do círculo com pontos de inflexão [Internet]. 2001 ;[citado 2024 nov. 04 ] Available from: https://teses.usp.br/teses/disponiveis/45/45132/tde-20220712-115429/
    • Vancouver

      Nascimento ML do. Dinâmica de recobrimentos do círculo com pontos de inflexão [Internet]. 2001 ;[citado 2024 nov. 04 ] Available from: https://teses.usp.br/teses/disponiveis/45/45132/tde-20220712-115429/
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: ATRATORES, DINÂMICA UNIDIMENSIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VARGAS, Edson. Measure of minimal sets of polymodal maps. Ergodic Theory and Dynamical Systems, v. 16, n. 1, p. 159-178, 1996Tradução . . Disponível em: https://doi.org/10.1017/s0143385700008750. Acesso em: 04 nov. 2024.
    • APA

      Vargas, E. (1996). Measure of minimal sets of polymodal maps. Ergodic Theory and Dynamical Systems, 16( 1), 159-178. doi:10.1017/s0143385700008750
    • NLM

      Vargas E. Measure of minimal sets of polymodal maps [Internet]. Ergodic Theory and Dynamical Systems. 1996 ; 16( 1): 159-178.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1017/s0143385700008750
    • Vancouver

      Vargas E. Measure of minimal sets of polymodal maps [Internet]. Ergodic Theory and Dynamical Systems. 1996 ; 16( 1): 159-178.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1017/s0143385700008750

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024