Filtros : "ATRATORES" "ESPAÇOS DE BANACH" Removido: "Indiana University Mathematics Journal" Limpar

Filtros



Refine with date range


  • Source: Abstracts. Conference titles: ICMC Summer Meeting on Differential Equations. Unidade: ICMC

    Subjects: TEORIA DA DIMENSÃO, ESPAÇOS DE BANACH, ATRATORES, EQUAÇÕES DIFERENCIAIS

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ-LÁZARO, Heraclio et al. Time-dependent differential processes and their relationship with the fractal dimension theory. 2024, Anais.. São Carlos: ICMC-USP, 2024. Disponível em: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php. Acesso em: 04 nov. 2024.
    • APA

      López-Lázaro, H., Carvalho, A. N. de, Caraballo, T., & Cunha, A. C. (2024). Time-dependent differential processes and their relationship with the fractal dimension theory. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
    • NLM

      López-Lázaro H, Carvalho AN de, Caraballo T, Cunha AC. Time-dependent differential processes and their relationship with the fractal dimension theory [Internet]. Abstracts. 2024 ;[citado 2024 nov. 04 ] Available from: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
    • Vancouver

      López-Lázaro H, Carvalho AN de, Caraballo T, Cunha AC. Time-dependent differential processes and their relationship with the fractal dimension theory [Internet]. Abstracts. 2024 ;[citado 2024 nov. 04 ] Available from: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ESPAÇOS DE BANACH, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de et al. Finite-dimensional negatively invariant subsets of Banach spaces. Journal of Mathematical Analysis and Applications, v. 509, n. 2, p. 1-21, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125945. Acesso em: 04 nov. 2024.
    • APA

      Carvalho, A. N. de, Cunha, A. C., Langa, J. A., & Robinson, J. C. (2022). Finite-dimensional negatively invariant subsets of Banach spaces. Journal of Mathematical Analysis and Applications, 509( 2), 1-21. doi:10.1016/j.jmaa.2021.125945
    • NLM

      Carvalho AN de, Cunha AC, Langa JA, Robinson JC. Finite-dimensional negatively invariant subsets of Banach spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 509( 2): 1-21.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125945
    • Vancouver

      Carvalho AN de, Cunha AC, Langa JA, Robinson JC. Finite-dimensional negatively invariant subsets of Banach spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 509( 2): 1-21.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125945
  • Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, ATRATORES, FRACTAIS, ESPAÇOS DE BANACH, EQUAÇÕES DE NAVIER-STOKES, OPERADORES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CUNHA, Arthur Cavalcante. Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settings. 2021. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2021. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-26032021-135356/. Acesso em: 04 nov. 2024.
    • APA

      Cunha, A. C. (2021). Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settings (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-26032021-135356/
    • NLM

      Cunha AC. Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settings [Internet]. 2021 ;[citado 2024 nov. 04 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-26032021-135356/
    • Vancouver

      Cunha AC. Finite-dimensionality of attractors for dynamical systems with applications: deterministic and random settings [Internet]. 2021 ;[citado 2024 nov. 04 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-26032021-135356/
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, ESPAÇOS DE BANACH

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Rítis et al. Topological structural stability of partial differential equations on projected spaces. Journal of Dynamics and Differential Equations, v. 30, n. 2, p. 687-718, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10884-016-9567-x. Acesso em: 04 nov. 2024.
    • APA

      Aragão-Costa, É. R., Figueroa-López, R. N., Langa, J. A., & Lozada-Cruz, G. (2018). Topological structural stability of partial differential equations on projected spaces. Journal of Dynamics and Differential Equations, 30( 2), 687-718. doi:10.1007/s10884-016-9567-x
    • NLM

      Aragão-Costa ÉR, Figueroa-López RN, Langa JA, Lozada-Cruz G. Topological structural stability of partial differential equations on projected spaces [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 2): 687-718.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s10884-016-9567-x
    • Vancouver

      Aragão-Costa ÉR, Figueroa-López RN, Langa JA, Lozada-Cruz G. Topological structural stability of partial differential equations on projected spaces [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 2): 687-718.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s10884-016-9567-x
  • Source: Abstracts. Conference titles: ICMC Summer Meeting on Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS, ATRATORES, ESPAÇOS DE BANACH

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOPÉZ, Rodiak Nicolai Figueroa et al. Topological structural stability and p-continuity of global attractors. 2017, Anais.. São Carlos: ICMC-USP, 2017. Disponível em: http://summer.icmc.usp.br/summers/summer17/pg_abstract.php. Acesso em: 04 nov. 2024.
    • APA

      Lopéz, R. N. F., Cruz, G. J. L., Aragão-Costa, É. R., & Rosado, J. A. L. (2017). Topological structural stability and p-continuity of global attractors. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer17/pg_abstract.php
    • NLM

      Lopéz RNF, Cruz GJL, Aragão-Costa ÉR, Rosado JAL. Topological structural stability and p-continuity of global attractors [Internet]. Abstracts. 2017 ;[citado 2024 nov. 04 ] Available from: http://summer.icmc.usp.br/summers/summer17/pg_abstract.php
    • Vancouver

      Lopéz RNF, Cruz GJL, Aragão-Costa ÉR, Rosado JAL. Topological structural stability and p-continuity of global attractors [Internet]. Abstracts. 2017 ;[citado 2024 nov. 04 ] Available from: http://summer.icmc.usp.br/summers/summer17/pg_abstract.php

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024