Filtros : "APRENDIZADO COMPUTACIONAL" "Amaris, Marcos" "EACH" Removidos: "IFSC444" "GEOGRAFIA" "Cuba" "Nolasco, Marcelo Antunes" "EACH-CAF-86" "HELD, MARIA SILVIA BARROS DE" "2015" "Associação Brasileira de Obstetrizes e Enfermeiros Obstetras" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Parallel and Distributed Computing. Unidades: EACH, IME

    Assunto: APRENDIZADO COMPUTACIONAL

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AMARIS, Marcos et al. Evaluating execution time predictions on GPU kernels using an analytical model and machine learning techniques. Journal of Parallel and Distributed Computing, v. 171, n. ja 2023, p. 66-78, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jpdc.2022.09.002. Acesso em: 03 nov. 2024.
    • APA

      Amaris, M., Camargo, R., Cordeiro, D. de A., Goldman, A., & Trystram, D. (2023). Evaluating execution time predictions on GPU kernels using an analytical model and machine learning techniques. Journal of Parallel and Distributed Computing, 171( ja 2023), 66-78. doi:10.1016/j.jpdc.2022.09.002
    • NLM

      Amaris M, Camargo R, Cordeiro D de A, Goldman A, Trystram D. Evaluating execution time predictions on GPU kernels using an analytical model and machine learning techniques [Internet]. Journal of Parallel and Distributed Computing. 2023 ; 171( ja 2023): 66-78.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1016/j.jpdc.2022.09.002
    • Vancouver

      Amaris M, Camargo R, Cordeiro D de A, Goldman A, Trystram D. Evaluating execution time predictions on GPU kernels using an analytical model and machine learning techniques [Internet]. Journal of Parallel and Distributed Computing. 2023 ; 171( ja 2023): 66-78.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1016/j.jpdc.2022.09.002

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2024