Filtros : "ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS" "Financiamento CNPq" Removido: "Misra, Kailash C." Limpar

Filtros



Refine with date range


  • Source: Communications in Algebra. Unidade: IME

    Subjects: ESTRUTURAS ALGÉBRICAS ORDENADAS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ISMAILOV, Nurlan e SHESTAKOV, Ivan P e ZHANG, Zerui. Free commutative two-step-associative algebras. Communications in Algebra, 2024Tradução . . Disponível em: https://doi.org/10.1080/00927872.2024.2362345. Acesso em: 05 nov. 2024.
    • APA

      Ismailov, N., Shestakov, I. P., & Zhang, Z. (2024). Free commutative two-step-associative algebras. Communications in Algebra. doi:10.1080/00927872.2024.2362345
    • NLM

      Ismailov N, Shestakov IP, Zhang Z. Free commutative two-step-associative algebras [Internet]. Communications in Algebra. 2024 ;[citado 2024 nov. 05 ] Available from: https://doi.org/10.1080/00927872.2024.2362345
    • Vancouver

      Ismailov N, Shestakov IP, Zhang Z. Free commutative two-step-associative algebras [Internet]. Communications in Algebra. 2024 ;[citado 2024 nov. 05 ] Available from: https://doi.org/10.1080/00927872.2024.2362345
  • Source: Journal of Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MURAKAMI, Lúcia Satie Ikemoto et al. Commutative power-associative representations of symmetric matrices. Journal of Algebra, v. 644, p. 411-427, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2024.01.017. Acesso em: 05 nov. 2024.
    • APA

      Murakami, L. S. I., Nascimento, P. S. M. do, Shestakov, I. P., & Picanço da Silva, J. (2024). Commutative power-associative representations of symmetric matrices. Journal of Algebra, 644, 411-427. doi:10.1016/j.jalgebra.2024.01.017
    • NLM

      Murakami LSI, Nascimento PSM do, Shestakov IP, Picanço da Silva J. Commutative power-associative representations of symmetric matrices [Internet]. Journal of Algebra. 2024 ; 644 411-427.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jalgebra.2024.01.017
    • Vancouver

      Murakami LSI, Nascimento PSM do, Shestakov IP, Picanço da Silva J. Commutative power-associative representations of symmetric matrices [Internet]. Journal of Algebra. 2024 ; 644 411-427.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jalgebra.2024.01.017
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e MORALES, Oscar e KŘIŽKA, Libor. Admissible representations of simple affine vertex algebras. Journal of Algebra, v. 628, p. 22-70, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2023.03.010. Acesso em: 05 nov. 2024.
    • APA

      Futorny, V., Morales, O., & Křižka, L. (2023). Admissible representations of simple affine vertex algebras. Journal of Algebra, 628, 22-70. doi:10.1016/j.jalgebra.2023.03.010
    • NLM

      Futorny V, Morales O, Křižka L. Admissible representations of simple affine vertex algebras [Internet]. Journal of Algebra. 2023 ; 628 22-70.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jalgebra.2023.03.010
    • Vancouver

      Futorny V, Morales O, Křižka L. Admissible representations of simple affine vertex algebras [Internet]. Journal of Algebra. 2023 ; 628 22-70.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jalgebra.2023.03.010
  • Source: Communications in Contemporary Mathematics. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, GEOMETRIA ALGÉBRICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e KŘIŽKA, Libor. Twisting functors and Gelfand-Tsetlin modules over semisimple Lie algebras. Communications in Contemporary Mathematics, v. 25, n. 8, 2023Tradução . . Disponível em: https://doi.org/10.1142/S0219199722500316. Acesso em: 05 nov. 2024.
    • APA

      Futorny, V., & Křižka, L. (2023). Twisting functors and Gelfand-Tsetlin modules over semisimple Lie algebras. Communications in Contemporary Mathematics, 25( 8). doi:10.1142/S0219199722500316
    • NLM

      Futorny V, Křižka L. Twisting functors and Gelfand-Tsetlin modules over semisimple Lie algebras [Internet]. Communications in Contemporary Mathematics. 2023 ; 25( 8):[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219199722500316
    • Vancouver

      Futorny V, Křižka L. Twisting functors and Gelfand-Tsetlin modules over semisimple Lie algebras [Internet]. Communications in Contemporary Mathematics. 2023 ; 25( 8):[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219199722500316
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARDOSO, Maria Clara e FUTORNY, Vyacheslav. Affine Lie algebra representations induced from Whittaker modules. Proceedings of the American Mathematical Society, v. 151, p. 1041-1053, 2023Tradução . . Disponível em: https://doi.org/10.1090/proc/16209. Acesso em: 05 nov. 2024.
    • APA

      Cardoso, M. C., & Futorny, V. (2023). Affine Lie algebra representations induced from Whittaker modules. Proceedings of the American Mathematical Society, 151, 1041-1053. doi:10.1090/proc/16209
    • NLM

      Cardoso MC, Futorny V. Affine Lie algebra representations induced from Whittaker modules [Internet]. Proceedings of the American Mathematical Society. 2023 ; 151 1041-1053.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1090/proc/16209
    • Vancouver

      Cardoso MC, Futorny V. Affine Lie algebra representations induced from Whittaker modules [Internet]. Proceedings of the American Mathematical Society. 2023 ; 151 1041-1053.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1090/proc/16209
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, LAÇOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MURAKAMI, Lúcia Satie Ikemoto e PERESI, Luiz Antonio e SHESTAKOV, Ivan P. A retrospect of the research in nonassociative algebras in IME-USP. São Paulo Journal of Mathematical Sciences, v. 16, n. 1, p. 84-130, 2022Tradução . . Disponível em: https://doi.org/10.1007/s40863-021-00248-x. Acesso em: 05 nov. 2024.
    • APA

      Murakami, L. S. I., Peresi, L. A., & Shestakov, I. P. (2022). A retrospect of the research in nonassociative algebras in IME-USP. São Paulo Journal of Mathematical Sciences, 16( 1), 84-130. doi:10.1007/s40863-021-00248-x
    • NLM

      Murakami LSI, Peresi LA, Shestakov IP. A retrospect of the research in nonassociative algebras in IME-USP [Internet]. São Paulo Journal of Mathematical Sciences. 2022 ; 16( 1): 84-130.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s40863-021-00248-x
    • Vancouver

      Murakami LSI, Peresi LA, Shestakov IP. A retrospect of the research in nonassociative algebras in IME-USP [Internet]. São Paulo Journal of Mathematical Sciences. 2022 ; 16( 1): 84-130.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s40863-021-00248-x
  • Source: Proceedings of the Edinburgh Mathematical Society. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS LIVRES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEHLBERG JÚNIOR, Renato e SÁNCHEZ, Javier. On free subalgebras of varieties. Proceedings of the Edinburgh Mathematical Society, v. 65 , n. 1 , p. 89-101, 2022Tradução . . Disponível em: https://doi.org/10.1017/S001309152100078X. Acesso em: 05 nov. 2024.
    • APA

      Fehlberg Júnior, R., & Sánchez, J. (2022). On free subalgebras of varieties. Proceedings of the Edinburgh Mathematical Society, 65 ( 1 ), 89-101. doi:10.1017/S001309152100078X
    • NLM

      Fehlberg Júnior R, Sánchez J. On free subalgebras of varieties [Internet]. Proceedings of the Edinburgh Mathematical Society. 2022 ; 65 ( 1 ): 89-101.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1017/S001309152100078X
    • Vancouver

      Fehlberg Júnior R, Sánchez J. On free subalgebras of varieties [Internet]. Proceedings of the Edinburgh Mathematical Society. 2022 ; 65 ( 1 ): 89-101.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1017/S001309152100078X
  • Source: Journal of Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OVALLE, Daniel Felipe Castro e SHESTAKOV, Ivan P. Composition color algebras. Journal of Algebra, v. 602, p. 83-129, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2022.03.012. Acesso em: 05 nov. 2024.
    • APA

      Ovalle, D. F. C., & Shestakov, I. P. (2022). Composition color algebras. Journal of Algebra, 602, 83-129. doi:10.1016/j.jalgebra.2022.03.012
    • NLM

      Ovalle DFC, Shestakov IP. Composition color algebras [Internet]. Journal of Algebra. 2022 ; 602 83-129.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jalgebra.2022.03.012
    • Vancouver

      Ovalle DFC, Shestakov IP. Composition color algebras [Internet]. Journal of Algebra. 2022 ; 602 83-129.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jalgebra.2022.03.012
  • Source: Revista Matemática Iberoamericana. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ SOLÍS, Victor Hugo e SHESTAKOV, Ivan P. On a problem by Nathan Jacobson. Revista Matemática Iberoamericana, v. 38, n. 4, p. 1219-1238, 2022Tradução . . Disponível em: https://doi.org/10.4171/RMI/1299. Acesso em: 05 nov. 2024.
    • APA

      López Solís, V. H., & Shestakov, I. P. (2022). On a problem by Nathan Jacobson. Revista Matemática Iberoamericana, 38( 4), 1219-1238. doi:10.4171/RMI/1299
    • NLM

      López Solís VH, Shestakov IP. On a problem by Nathan Jacobson [Internet]. Revista Matemática Iberoamericana. 2022 ; 38( 4): 1219-1238.[citado 2024 nov. 05 ] Available from: https://doi.org/10.4171/RMI/1299
    • Vancouver

      López Solís VH, Shestakov IP. On a problem by Nathan Jacobson [Internet]. Revista Matemática Iberoamericana. 2022 ; 38( 4): 1219-1238.[citado 2024 nov. 05 ] Available from: https://doi.org/10.4171/RMI/1299
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHEN, Yuqun e SHESTAKOV, Ivan P e ZHANG, Zerui. Free Lie-admissible algebras and an analogue of the PBW theorem. Journal of Algebra, v. 590, p. 234-253, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2021.10.015. Acesso em: 05 nov. 2024.
    • APA

      Chen, Y., Shestakov, I. P., & Zhang, Z. (2022). Free Lie-admissible algebras and an analogue of the PBW theorem. Journal of Algebra, 590, 234-253. doi:10.1016/j.jalgebra.2021.10.015
    • NLM

      Chen Y, Shestakov IP, Zhang Z. Free Lie-admissible algebras and an analogue of the PBW theorem [Internet]. Journal of Algebra. 2022 ; 590 234-253.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.10.015
    • Vancouver

      Chen Y, Shestakov IP, Zhang Z. Free Lie-admissible algebras and an analogue of the PBW theorem [Internet]. Journal of Algebra. 2022 ; 590 234-253.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.10.015
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre et al. On simple 15-dimensional Lie algebras in characteristic 2. Journal of Algebra, v. 593, p. 295-318, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2021.11.021. Acesso em: 05 nov. 2024.
    • APA

      Grichkov, A., Guzzo Júnior, H., Rasskazova, M., & Zusmanovich, P. (2022). On simple 15-dimensional Lie algebras in characteristic 2. Journal of Algebra, 593, 295-318. doi:10.1016/j.jalgebra.2021.11.021
    • NLM

      Grichkov A, Guzzo Júnior H, Rasskazova M, Zusmanovich P. On simple 15-dimensional Lie algebras in characteristic 2 [Internet]. Journal of Algebra. 2022 ; 593 295-318.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.11.021
    • Vancouver

      Grichkov A, Guzzo Júnior H, Rasskazova M, Zusmanovich P. On simple 15-dimensional Lie algebras in characteristic 2 [Internet]. Journal of Algebra. 2022 ; 593 295-318.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.11.021
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS FILHO, G e MURAKAMI, Lúcia Satie Ikemoto e SHESTAKOV, Ivan P. Locally finite coalgebras and the locally nilpotent radical II. Communications in Algebra, v. 49, n. 12, p. 5472-5482, 2021Tradução . . Disponível em: https://doi.org/10.1080/00927872.2021.1947310. Acesso em: 05 nov. 2024.
    • APA

      Santos Filho, G., Murakami, L. S. I., & Shestakov, I. P. (2021). Locally finite coalgebras and the locally nilpotent radical II. Communications in Algebra, 49( 12), 5472-5482. doi:10.1080/00927872.2021.1947310
    • NLM

      Santos Filho G, Murakami LSI, Shestakov IP. Locally finite coalgebras and the locally nilpotent radical II [Internet]. Communications in Algebra. 2021 ; 49( 12): 5472-5482.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1080/00927872.2021.1947310
    • Vancouver

      Santos Filho G, Murakami LSI, Shestakov IP. Locally finite coalgebras and the locally nilpotent radical II [Internet]. Communications in Algebra. 2021 ; 49( 12): 5472-5482.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1080/00927872.2021.1947310
  • Source: Mathematical Research Letters. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e SERGANOVA, Vera e ZHANG, Jian. Gelfand-Tsetlin modules for gl(m|n). Mathematical Research Letters, v. 28, n. 5, p. 1379-1418, 2021Tradução . . Disponível em: https://doi.org/10.4310/MRL.2021.v28.n5.a5. Acesso em: 05 nov. 2024.
    • APA

      Futorny, V., Serganova, V., & Zhang, J. (2021). Gelfand-Tsetlin modules for gl(m|n). Mathematical Research Letters, 28( 5), 1379-1418. doi:10.4310/MRL.2021.v28.n5.a5
    • NLM

      Futorny V, Serganova V, Zhang J. Gelfand-Tsetlin modules for gl(m|n) [Internet]. Mathematical Research Letters. 2021 ; 28( 5): 1379-1418.[citado 2024 nov. 05 ] Available from: https://doi.org/10.4310/MRL.2021.v28.n5.a5
    • Vancouver

      Futorny V, Serganova V, Zhang J. Gelfand-Tsetlin modules for gl(m|n) [Internet]. Mathematical Research Letters. 2021 ; 28( 5): 1379-1418.[citado 2024 nov. 05 ] Available from: https://doi.org/10.4310/MRL.2021.v28.n5.a5
  • Source: Colloquium Mathematicum. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Bruno Leonardo Macedo e GUZZO JÚNIOR, Henrique e KAYGORODOV, Ivan. Lie maps on alternative rings preserving idempotents. Colloquium Mathematicum, v. 166, n. 2, p. 227-238, 2021Tradução . . Disponível em: https://doi.org/10.4064/cm8195-10-2020. Acesso em: 05 nov. 2024.
    • APA

      Ferreira, B. L. M., Guzzo Júnior, H., & Kaygorodov, I. (2021). Lie maps on alternative rings preserving idempotents. Colloquium Mathematicum, 166( 2), 227-238. doi:10.4064/cm8195-10-2020
    • NLM

      Ferreira BLM, Guzzo Júnior H, Kaygorodov I. Lie maps on alternative rings preserving idempotents [Internet]. Colloquium Mathematicum. 2021 ; 166( 2): 227-238.[citado 2024 nov. 05 ] Available from: https://doi.org/10.4064/cm8195-10-2020
    • Vancouver

      Ferreira BLM, Guzzo Júnior H, Kaygorodov I. Lie maps on alternative rings preserving idempotents [Internet]. Colloquium Mathematicum. 2021 ; 166( 2): 227-238.[citado 2024 nov. 05 ] Available from: https://doi.org/10.4064/cm8195-10-2020
  • Unidade: IME

    Subjects: ÁLGEBRA, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Carlos André Gomes. Comprimentos de álgebras não associativas. 2020. Dissertação (Mestrado) – Universidade de São Paulo, São Paulo, 2020. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-08022021-141849/. Acesso em: 05 nov. 2024.
    • APA

      Silva, C. A. G. (2020). Comprimentos de álgebras não associativas (Dissertação (Mestrado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-08022021-141849/
    • NLM

      Silva CAG. Comprimentos de álgebras não associativas [Internet]. 2020 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-08022021-141849/
    • Vancouver

      Silva CAG. Comprimentos de álgebras não associativas [Internet]. 2020 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-08022021-141849/
  • Source: Algebra and Discrete Mathematics. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE JORDAN

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KASHUBA, Iryna e OVSIENKO, Serge e SHESTAKOV, Ivan P. On the representation type of Jordan basic algebras. Algebra and Discrete Mathematics, v. 23, n. 1, p. 47-61, 2017Tradução . . Disponível em: http://admjournal.luguniv.edu.ua/index.php/adm/article/view/443. Acesso em: 05 nov. 2024.
    • APA

      Kashuba, I., Ovsienko, S., & Shestakov, I. P. (2017). On the representation type of Jordan basic algebras. Algebra and Discrete Mathematics, 23( 1), 47-61. Recuperado de http://admjournal.luguniv.edu.ua/index.php/adm/article/view/443
    • NLM

      Kashuba I, Ovsienko S, Shestakov IP. On the representation type of Jordan basic algebras [Internet]. Algebra and Discrete Mathematics. 2017 ; 23( 1): 47-61.[citado 2024 nov. 05 ] Available from: http://admjournal.luguniv.edu.ua/index.php/adm/article/view/443
    • Vancouver

      Kashuba I, Ovsienko S, Shestakov IP. On the representation type of Jordan basic algebras [Internet]. Algebra and Discrete Mathematics. 2017 ; 23( 1): 47-61.[citado 2024 nov. 05 ] Available from: http://admjournal.luguniv.edu.ua/index.php/adm/article/view/443
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, LAÇOS, ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MIKHALEV, Alexander A. e SHESTAKOV, Ivan P. PBW-pairs of varieties of linear algebras. Communications in Algebra, v. 42, n. 2, p. 667-687, 2014Tradução . . Disponível em: https://doi.org/10.1080/00927872.2012.720867. Acesso em: 05 nov. 2024.
    • APA

      Mikhalev, A. A., & Shestakov, I. P. (2014). PBW-pairs of varieties of linear algebras. Communications in Algebra, 42( 2), 667-687. doi:10.1080/00927872.2012.720867
    • NLM

      Mikhalev AA, Shestakov IP. PBW-pairs of varieties of linear algebras [Internet]. Communications in Algebra. 2014 ; 42( 2): 667-687.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1080/00927872.2012.720867
    • Vancouver

      Mikhalev AA, Shestakov IP. PBW-pairs of varieties of linear algebras [Internet]. Communications in Algebra. 2014 ; 42( 2): 667-687.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1080/00927872.2012.720867
  • Source: Algebra and Logic. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRA DIFERENCIAL, ÁLGEBRAS DE LIE, ÁLGEBRAS DE JORDAN

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZHELYABIN, V. N e POPOV, A. A e SHESTAKOV, Ivan P. The coordinate ring of an n-dimensional sphere and some examples of differentially simple algebras. Algebra and Logic, v. 52, n. 4, p. 277-289, 2013Tradução . . Disponível em: https://doi.org/10.1007/s10469-013-9242-9. Acesso em: 05 nov. 2024.
    • APA

      Zhelyabin, V. N., Popov, A. A., & Shestakov, I. P. (2013). The coordinate ring of an n-dimensional sphere and some examples of differentially simple algebras. Algebra and Logic, 52( 4), 277-289. doi:10.1007/s10469-013-9242-9
    • NLM

      Zhelyabin VN, Popov AA, Shestakov IP. The coordinate ring of an n-dimensional sphere and some examples of differentially simple algebras [Internet]. Algebra and Logic. 2013 ; 52( 4): 277-289.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s10469-013-9242-9
    • Vancouver

      Zhelyabin VN, Popov AA, Shestakov IP. The coordinate ring of an n-dimensional sphere and some examples of differentially simple algebras [Internet]. Algebra and Logic. 2013 ; 52( 4): 277-289.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s10469-013-9242-9
  • Source: Advances in Applied Clifford Algebras. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KHARCHENKO, V. K e SHESTAKOV, Ivan P. Generalizations of Lie algebras. Advances in Applied Clifford Algebras, v. 22, n. 3, p. 721-743, 2012Tradução . . Disponível em: https://doi.org/10.1007/s00006-012-0357-1. Acesso em: 05 nov. 2024.
    • APA

      Kharchenko, V. K., & Shestakov, I. P. (2012). Generalizations of Lie algebras. Advances in Applied Clifford Algebras, 22( 3), 721-743. doi:10.1007/s00006-012-0357-1
    • NLM

      Kharchenko VK, Shestakov IP. Generalizations of Lie algebras [Internet]. Advances in Applied Clifford Algebras. 2012 ; 22( 3): 721-743.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s00006-012-0357-1
    • Vancouver

      Kharchenko VK, Shestakov IP. Generalizations of Lie algebras [Internet]. Advances in Applied Clifford Algebras. 2012 ; 22( 3): 721-743.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s00006-012-0357-1
  • Source: Journal of Mathematical Sciences. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TRUSHINA, M. N e SHESTAKOV, Ivan P. Representations of alternative algebras and superalgebras. Journal of Mathematical Sciences, v. 185, n. 3, p. 504-512, 2012Tradução . . Disponível em: https://doi.org/10.1007/s10958-012-0932-y. Acesso em: 05 nov. 2024.
    • APA

      Trushina, M. N., & Shestakov, I. P. (2012). Representations of alternative algebras and superalgebras. Journal of Mathematical Sciences, 185( 3), 504-512. doi:10.1007/s10958-012-0932-y
    • NLM

      Trushina MN, Shestakov IP. Representations of alternative algebras and superalgebras [Internet]. Journal of Mathematical Sciences. 2012 ; 185( 3): 504-512.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s10958-012-0932-y
    • Vancouver

      Trushina MN, Shestakov IP. Representations of alternative algebras and superalgebras [Internet]. Journal of Mathematical Sciences. 2012 ; 185( 3): 504-512.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s10958-012-0932-y

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024