Filtros : "ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS" "Financiamento CAPES" Removidos: "Misra, Kailash C." "SBM" Limpar

Filtros



Refine with date range


  • Source: Journal of Algebra and Its Applications. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNÁNDEZ, Juan Carlos Gutiérrez e GRICHKOV, Alexandre e VANEGAS, Elkin Oveimar Quintero. On power-associative modules. Journal of Algebra and Its Applications, v. 22, n. 10, 2023Tradução . . Disponível em: https://doi.org/10.1142/S0219498823502055. Acesso em: 05 nov. 2024.
    • APA

      Fernández, J. C. G., Grichkov, A., & Vanegas, E. O. Q. (2023). On power-associative modules. Journal of Algebra and Its Applications, 22( 10). doi:10.1142/S0219498823502055
    • NLM

      Fernández JCG, Grichkov A, Vanegas EOQ. On power-associative modules [Internet]. Journal of Algebra and Its Applications. 2023 ; 22( 10):[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219498823502055
    • Vancouver

      Fernández JCG, Grichkov A, Vanegas EOQ. On power-associative modules [Internet]. Journal of Algebra and Its Applications. 2023 ; 22( 10):[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219498823502055
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e MORALES, Oscar e KŘIŽKA, Libor. Admissible representations of simple affine vertex algebras. Journal of Algebra, v. 628, p. 22-70, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2023.03.010. Acesso em: 05 nov. 2024.
    • APA

      Futorny, V., Morales, O., & Křižka, L. (2023). Admissible representations of simple affine vertex algebras. Journal of Algebra, 628, 22-70. doi:10.1016/j.jalgebra.2023.03.010
    • NLM

      Futorny V, Morales O, Křižka L. Admissible representations of simple affine vertex algebras [Internet]. Journal of Algebra. 2023 ; 628 22-70.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jalgebra.2023.03.010
    • Vancouver

      Futorny V, Morales O, Křižka L. Admissible representations of simple affine vertex algebras [Internet]. Journal of Algebra. 2023 ; 628 22-70.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jalgebra.2023.03.010
  • Source: Revista Matemática Iberoamericana. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ SOLÍS, Victor Hugo e SHESTAKOV, Ivan P. On a problem by Nathan Jacobson. Revista Matemática Iberoamericana, v. 38, n. 4, p. 1219-1238, 2022Tradução . . Disponível em: https://doi.org/10.4171/RMI/1299. Acesso em: 05 nov. 2024.
    • APA

      López Solís, V. H., & Shestakov, I. P. (2022). On a problem by Nathan Jacobson. Revista Matemática Iberoamericana, 38( 4), 1219-1238. doi:10.4171/RMI/1299
    • NLM

      López Solís VH, Shestakov IP. On a problem by Nathan Jacobson [Internet]. Revista Matemática Iberoamericana. 2022 ; 38( 4): 1219-1238.[citado 2024 nov. 05 ] Available from: https://doi.org/10.4171/RMI/1299
    • Vancouver

      López Solís VH, Shestakov IP. On a problem by Nathan Jacobson [Internet]. Revista Matemática Iberoamericana. 2022 ; 38( 4): 1219-1238.[citado 2024 nov. 05 ] Available from: https://doi.org/10.4171/RMI/1299
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS FILHO, G e MURAKAMI, Lúcia Satie Ikemoto e SHESTAKOV, Ivan P. Locally finite coalgebras and the locally nilpotent radical II. Communications in Algebra, v. 49, n. 12, p. 5472-5482, 2021Tradução . . Disponível em: https://doi.org/10.1080/00927872.2021.1947310. Acesso em: 05 nov. 2024.
    • APA

      Santos Filho, G., Murakami, L. S. I., & Shestakov, I. P. (2021). Locally finite coalgebras and the locally nilpotent radical II. Communications in Algebra, 49( 12), 5472-5482. doi:10.1080/00927872.2021.1947310
    • NLM

      Santos Filho G, Murakami LSI, Shestakov IP. Locally finite coalgebras and the locally nilpotent radical II [Internet]. Communications in Algebra. 2021 ; 49( 12): 5472-5482.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1080/00927872.2021.1947310
    • Vancouver

      Santos Filho G, Murakami LSI, Shestakov IP. Locally finite coalgebras and the locally nilpotent radical II [Internet]. Communications in Algebra. 2021 ; 49( 12): 5472-5482.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1080/00927872.2021.1947310
  • Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, CO-ÁLGEBRAS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS FILHO, Gilson Reis dos. Coálgebras não associativas e o radical localmente nilpotente. 2020. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2020. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-06012023-211952/. Acesso em: 05 nov. 2024.
    • APA

      Santos Filho, G. R. dos. (2020). Coálgebras não associativas e o radical localmente nilpotente (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-06012023-211952/
    • NLM

      Santos Filho GR dos. Coálgebras não associativas e o radical localmente nilpotente [Internet]. 2020 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-06012023-211952/
    • Vancouver

      Santos Filho GR dos. Coálgebras não associativas e o radical localmente nilpotente [Internet]. 2020 ;[citado 2024 nov. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-06012023-211952/

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024