Fonte: SIAM Journal on Optimization. Unidade: IME
Assuntos: CÁLCULO DE VARIAÇÕES, CONTROLE ÓTIMO, ANÁLISE NUMÉRICA, PESQUISA OPERACIONAL, PROGRAMAÇÃO NÃO LINEAR
ABNT
ANDREANI, Roberto et al. Constraint qualifications and strong global Convergence properties of an augmented lagrangian method on riemannian manifolds. SIAM Journal on Optimization, v. 34, n. 2, p. 1799-1825, 2024Tradução . . Disponível em: https://doi.org/10.1137/23M1582382. Acesso em: 11 nov. 2024.APA
Andreani, R., Couto, K. R., Ferreira, O. P., & Haeser, G. (2024). Constraint qualifications and strong global Convergence properties of an augmented lagrangian method on riemannian manifolds. SIAM Journal on Optimization, 34( 2), 1799-1825. doi:10.1137/23M1582382NLM
Andreani R, Couto KR, Ferreira OP, Haeser G. Constraint qualifications and strong global Convergence properties of an augmented lagrangian method on riemannian manifolds [Internet]. SIAM Journal on Optimization. 2024 ; 34( 2): 1799-1825.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1137/23M1582382Vancouver
Andreani R, Couto KR, Ferreira OP, Haeser G. Constraint qualifications and strong global Convergence properties of an augmented lagrangian method on riemannian manifolds [Internet]. SIAM Journal on Optimization. 2024 ; 34( 2): 1799-1825.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1137/23M1582382