Filtros : "ANÁLISE GLOBAL" "Espanha" "ICMC" Removidos: "PROBABILIDADE" "McLaren, Bruce" "Tailândia" "Financiado pelo Government of Aragón, Spain" "Physical Review E" Limpar

Filtros



Refine with date range


  • Source: Discrete and Continuous Dynamical Systems : Series B. Unidade: ICMC

    Subjects: ANÁLISE GLOBAL, ATRATORES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, GEOMETRIA DIFERENCIAL, ESPAÇOS SIMÉTRICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de et al. Structure of non-autonomous attractors for a class of diffusively coupled ODE. Discrete and Continuous Dynamical Systems : Series B, v. 28, n. Ja 2023, p. 426-448, 2023Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2022083. Acesso em: 19 nov. 2024.
    • APA

      Carvalho, A. N. de, Rocha, L. R. N., Langa, J. A., & Obaya, R. (2023). Structure of non-autonomous attractors for a class of diffusively coupled ODE. Discrete and Continuous Dynamical Systems : Series B, 28( Ja 2023), 426-448. doi:10.3934/dcdsb.2022083
    • NLM

      Carvalho AN de, Rocha LRN, Langa JA, Obaya R. Structure of non-autonomous attractors for a class of diffusively coupled ODE [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2023 ; 28( Ja 2023): 426-448.[citado 2024 nov. 19 ] Available from: https://doi.org/10.3934/dcdsb.2022083
    • Vancouver

      Carvalho AN de, Rocha LRN, Langa JA, Obaya R. Structure of non-autonomous attractors for a class of diffusively coupled ODE [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2023 ; 28( Ja 2023): 426-448.[citado 2024 nov. 19 ] Available from: https://doi.org/10.3934/dcdsb.2022083
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, ANÁLISE GLOBAL

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan Carles e MOTA, Marcos Coutinho e REZENDE, Alex Carlucci. Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node. Electronic Journal of Qualitative Theory of Differential Equations, v. 2021, n. 35, p. 1-89, 2021Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2021.1.35. Acesso em: 19 nov. 2024.
    • APA

      Artés, J. C., Mota, M. C., & Rezende, A. C. (2021). Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node. Electronic Journal of Qualitative Theory of Differential Equations, 2021( 35), 1-89. doi:10.14232/ejqtde.2021.1.35
    • NLM

      Artés JC, Mota MC, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 35): 1-89.[citado 2024 nov. 19 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.35
    • Vancouver

      Artés JC, Mota MC, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 35): 1-89.[citado 2024 nov. 19 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.35
  • Source: Discrete and Continuous Dynamical Systems : Series B. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ANÁLISE GLOBAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CABALLERO, Rubén et al. Robustness of dynamically gradient multivalued dynamical systems. Discrete and Continuous Dynamical Systems : Series B, v. 24, n. 3, p. 1049-1077, 2019Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2019006. Acesso em: 19 nov. 2024.
    • APA

      Caballero, R., Carvalho, A. N. de, Marín-Rubio, P., & Valero, J. (2019). Robustness of dynamically gradient multivalued dynamical systems. Discrete and Continuous Dynamical Systems : Series B, 24( 3), 1049-1077. doi:10.3934/dcdsb.2019006
    • NLM

      Caballero R, Carvalho AN de, Marín-Rubio P, Valero J. Robustness of dynamically gradient multivalued dynamical systems [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2019 ; 24( 3): 1049-1077.[citado 2024 nov. 19 ] Available from: https://doi.org/10.3934/dcdsb.2019006
    • Vancouver

      Caballero R, Carvalho AN de, Marín-Rubio P, Valero J. Robustness of dynamically gradient multivalued dynamical systems [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2019 ; 24( 3): 1049-1077.[citado 2024 nov. 19 ] Available from: https://doi.org/10.3934/dcdsb.2019006

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024