Filtros : "Indexado no Web of Science" "Communications on Pure and Applied Analysis" Limpar

Filtros



Refine with date range


  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: TEORIA DE MORSE, MÉTODOS VARIACIONAIS, EQUAÇÃO DE SCHRODINGER, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Claudianor Oliveira e NEMER, Rodrigo Cohen Mota e SOARES, Sérgio Henrique Monari. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure and Applied Analysis, v. 20, n. Ja 2021, p. 449-465, 2021Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2020276. Acesso em: 01 nov. 2024.
    • APA

      Alves, C. O., Nemer, R. C. M., & Soares, S. H. M. (2021). The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure and Applied Analysis, 20( Ja 2021), 449-465. doi:10.3934/cpaa.2020276
    • NLM

      Alves CO, Nemer RCM, Soares SHM. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field [Internet]. Communications on Pure and Applied Analysis. 2021 ; 20( Ja 2021): 449-465.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2020276
    • Vancouver

      Alves CO, Nemer RCM, Soares SHM. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field [Internet]. Communications on Pure and Applied Analysis. 2021 ; 20( Ja 2021): 449-465.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2020276
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: ATRATORES, ESTABILIDADE ESTRUTURAL (EQUAÇÕES DIFERENCIAIS ORDINÁRIAS)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e DEMUNER, Daniela Paula. Stability and forward attractors for non-autonomous impulsive semidynamical systems. Communications on Pure and Applied Analysis, v. 19, n. 4, p. 1979-1996, 2020Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2020087. Acesso em: 01 nov. 2024.
    • APA

      Bonotto, E. de M., & Demuner, D. P. (2020). Stability and forward attractors for non-autonomous impulsive semidynamical systems. Communications on Pure and Applied Analysis, 19( 4), 1979-1996. doi:10.3934/cpaa.2020087
    • NLM

      Bonotto E de M, Demuner DP. Stability and forward attractors for non-autonomous impulsive semidynamical systems [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 1979-1996.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2020087
    • Vancouver

      Bonotto E de M, Demuner DP. Stability and forward attractors for non-autonomous impulsive semidynamical systems [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 1979-1996.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2020087
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, ATRATORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e LANGA, José Antonio e ROBINSON, James C. Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor. Communications on Pure and Applied Analysis, v. 19, n. 4, p. 1997-2013, 2020Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2020088. Acesso em: 01 nov. 2024.
    • APA

      Carvalho, A. N. de, Langa, J. A., & Robinson, J. C. (2020). Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor. Communications on Pure and Applied Analysis, 19( 4), 1997-2013. doi:10.3934/cpaa.2020088
    • NLM

      Carvalho AN de, Langa JA, Robinson JC. Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 1997-2013.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2020088
    • Vancouver

      Carvalho AN de, Langa JA, Robinson JC. Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 1997-2013.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2020088
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS LINEARES, ROBUSTEZ, DIMENSÃO INFINITA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e SOLA-MORALES, Joan e NAKASSIMA, Guilherme Kenji. Stability problems in nonautonomous linear differential equations in infinite dimensions. Communications on Pure and Applied Analysis, v. 19, n. 6, p. 3189-3207, 2020Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2020138. Acesso em: 01 nov. 2024.
    • APA

      Rodrigues, H. M., Sola-Morales, J., & Nakassima, G. K. (2020). Stability problems in nonautonomous linear differential equations in infinite dimensions. Communications on Pure and Applied Analysis, 19( 6), 3189-3207. doi:10.3934/cpaa.2020138
    • NLM

      Rodrigues HM, Sola-Morales J, Nakassima GK. Stability problems in nonautonomous linear differential equations in infinite dimensions [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 6): 3189-3207.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2020138
    • Vancouver

      Rodrigues HM, Sola-Morales J, Nakassima GK. Stability problems in nonautonomous linear differential equations in infinite dimensions [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 6): 3189-3207.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2020138
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS HIPERBÓLICAS, EQUAÇÕES DA ONDA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MA, To Fu e SEMINARIO-HUERTAS, Paulo Nicanor. Attractors for semilinear wave equations with localized damping and external forces. Communications on Pure and Applied Analysis, v. 19, n. 4, p. 2219-2233, 2020Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2020097. Acesso em: 01 nov. 2024.
    • APA

      Ma, T. F., & Seminario-Huertas, P. N. (2020). Attractors for semilinear wave equations with localized damping and external forces. Communications on Pure and Applied Analysis, 19( 4), 2219-2233. doi:10.3934/cpaa.2020097
    • NLM

      Ma TF, Seminario-Huertas PN. Attractors for semilinear wave equations with localized damping and external forces [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 2219-2233.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2020097
    • Vancouver

      Ma TF, Seminario-Huertas PN. Attractors for semilinear wave equations with localized damping and external forces [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 2219-2233.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2020097
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LI, Yanan et al. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation. Communications on Pure and Applied Analysis, v. No 2020, n. 11, p. 5181-5196, 2020Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2020232. Acesso em: 01 nov. 2024.
    • APA

      Li, Y., Carvalho, A. N. de, Luna, T. L. M., & Moreira, E. M. (2020). A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation. Communications on Pure and Applied Analysis, No 2020( 11), 5181-5196. doi:10.3934/cpaa.2020232
    • NLM

      Li Y, Carvalho AN de, Luna TLM, Moreira EM. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation [Internet]. Communications on Pure and Applied Analysis. 2020 ; No 2020( 11): 5181-5196.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2020232
    • Vancouver

      Li Y, Carvalho AN de, Luna TLM, Moreira EM. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation [Internet]. Communications on Pure and Applied Analysis. 2020 ; No 2020( 11): 5181-5196.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2020232
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, DINÂMICA TOPOLÓGICA, ANÁLISE FUNCIONAL, OPERADORES PSEUDODIFERENCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Rítis. An extension of the concept of exponential dichotomy in Fréchet spaces which is stable under perturbation. Communications on Pure and Applied Analysis, v. 18, n. 2, p. 845-868, 2019Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2019041. Acesso em: 01 nov. 2024.
    • APA

      Aragão-Costa, É. R. (2019). An extension of the concept of exponential dichotomy in Fréchet spaces which is stable under perturbation. Communications on Pure and Applied Analysis, 18( 2), 845-868. doi:10.3934/cpaa.2019041
    • NLM

      Aragão-Costa ÉR. An extension of the concept of exponential dichotomy in Fréchet spaces which is stable under perturbation [Internet]. Communications on Pure and Applied Analysis. 2019 ; 18( 2): 845-868.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2019041
    • Vancouver

      Aragão-Costa ÉR. An extension of the concept of exponential dichotomy in Fréchet spaces which is stable under perturbation [Internet]. Communications on Pure and Applied Analysis. 2019 ; 18( 2): 845-868.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2019041

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024