Filtros : "Indexado no Science Citation Index" "Multimedia Tools and Applications" "EESC" Removidos: "SANEAMENTO BÁSICO" "CALIJURI, MARIA DO CARMO" Limpar

Filtros



Refine with date range


  • Source: Multimedia Tools and Applications. Unidades: ICMC, EESC

    Subjects: REDES NEURAIS, APRENDIZADO COMPUTACIONAL, RECONHECIMENTO DE IMAGEM, OLHO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERRAZ, Carolina Toledo et al. A comparison among keyframe extraction techniques for CNN classification based on video periocular images. Multimedia Tools and Applications, v. 80, n. 8, p. 12843-12856, 2021Tradução . . Disponível em: https://doi.org/10.1007/s11042-020-10384-9. Acesso em: 13 nov. 2024.
    • APA

      Ferraz, C. T., Barcellos, W., Pereira Junior, O., Borges, T. T. N., Manzato, M. G., Gonzaga, A., & Saito, J. H. (2021). A comparison among keyframe extraction techniques for CNN classification based on video periocular images. Multimedia Tools and Applications, 80( 8), 12843-12856. doi:10.1007/s11042-020-10384-9
    • NLM

      Ferraz CT, Barcellos W, Pereira Junior O, Borges TTN, Manzato MG, Gonzaga A, Saito JH. A comparison among keyframe extraction techniques for CNN classification based on video periocular images [Internet]. Multimedia Tools and Applications. 2021 ; 80( 8): 12843-12856.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1007/s11042-020-10384-9
    • Vancouver

      Ferraz CT, Barcellos W, Pereira Junior O, Borges TTN, Manzato MG, Gonzaga A, Saito JH. A comparison among keyframe extraction techniques for CNN classification based on video periocular images [Internet]. Multimedia Tools and Applications. 2021 ; 80( 8): 12843-12856.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1007/s11042-020-10384-9
  • Source: Multimedia Tools and Applications. Unidade: EESC

    Subjects: ÍRIS, BIOMETRIA, PUPILA, ENGENHARIA ELÉTRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUZA, Jones Mendonça de e GONZAGA, Adilson. Human iris feature extraction under pupil size variation using local texture descriptors. Multimedia Tools and Applications, 2019Tradução . . Disponível em: https://doi.org/10.1007/s11042-019-7371-4. Acesso em: 13 nov. 2024.
    • APA

      Souza, J. M. de, & Gonzaga, A. (2019). Human iris feature extraction under pupil size variation using local texture descriptors. Multimedia Tools and Applications. doi:10.1007/s11042-019-7371-4
    • NLM

      Souza JM de, Gonzaga A. Human iris feature extraction under pupil size variation using local texture descriptors [Internet]. Multimedia Tools and Applications. 2019 ;[citado 2024 nov. 13 ] Available from: https://doi.org/10.1007/s11042-019-7371-4
    • Vancouver

      Souza JM de, Gonzaga A. Human iris feature extraction under pupil size variation using local texture descriptors [Internet]. Multimedia Tools and Applications. 2019 ;[citado 2024 nov. 13 ] Available from: https://doi.org/10.1007/s11042-019-7371-4
  • Source: Multimedia Tools and Applications. Unidade: EESC

    Subjects: RECONHECIMENTO DE IMAGEM, ENGENHARIA ELÉTRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VIEIRA, Raissa Tavares e NEGRI, Tamiris Trevisan e GONZAGA, Adilson. Improving the classification of rotated images by adding the signal and magnitude information to a local texture descriptor. Multimedia Tools and Applications, 2018Tradução . . Disponível em: https://doi.org/10.1007/s11042-018-6204-1. Acesso em: 13 nov. 2024.
    • APA

      Vieira, R. T., Negri, T. T., & Gonzaga, A. (2018). Improving the classification of rotated images by adding the signal and magnitude information to a local texture descriptor. Multimedia Tools and Applications. doi:10.1007/s11042-018-6204-1
    • NLM

      Vieira RT, Negri TT, Gonzaga A. Improving the classification of rotated images by adding the signal and magnitude information to a local texture descriptor [Internet]. Multimedia Tools and Applications. 2018 ;[citado 2024 nov. 13 ] Available from: https://doi.org/10.1007/s11042-018-6204-1
    • Vancouver

      Vieira RT, Negri TT, Gonzaga A. Improving the classification of rotated images by adding the signal and magnitude information to a local texture descriptor [Internet]. Multimedia Tools and Applications. 2018 ;[citado 2024 nov. 13 ] Available from: https://doi.org/10.1007/s11042-018-6204-1

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024