Filtros : "Indexado na Web of Science" "CELULOSE" Removidos: "HU" "Nunes, Maria Tereza" "Passaglia, Rita de Cássia Aleixo Tostes" "Ribas, Lucas Correia" "MUSEOLOGIA" Limpar

Filtros



Refine with date range


  • Source: Ceramics International. Unidades: EESC, IFSC

    Subjects: SENSOR, MATERIAIS NANOESTRUTURADOS, CELULOSE, MATERIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LEITE, Ramon Resende et al. Environmentally friendly synthesis of In2O3 nano octahedrons by cellulose nanofiber template-assisted route and their potential application for O3 gas sensing. Ceramics International, v. 50, n. 7, p. 10192-10202, 2024Tradução . . Disponível em: http://dx.doi.org/10.1016/j.ceramint.2023.12.329. Acesso em: 08 ago. 2024.
    • APA

      Leite, R. R., Komorizono, A. A., Bernardi, M. I. B., Carvalho, A. J. F., & Mastelaro, V. R. (2024). Environmentally friendly synthesis of In2O3 nano octahedrons by cellulose nanofiber template-assisted route and their potential application for O3 gas sensing. Ceramics International, 50( 7), 10192-10202. doi:10.1016/j.ceramint.2023.12.329
    • NLM

      Leite RR, Komorizono AA, Bernardi MIB, Carvalho AJF, Mastelaro VR. Environmentally friendly synthesis of In2O3 nano octahedrons by cellulose nanofiber template-assisted route and their potential application for O3 gas sensing [Internet]. Ceramics International. 2024 ; 50( 7): 10192-10202.[citado 2024 ago. 08 ] Available from: http://dx.doi.org/10.1016/j.ceramint.2023.12.329
    • Vancouver

      Leite RR, Komorizono AA, Bernardi MIB, Carvalho AJF, Mastelaro VR. Environmentally friendly synthesis of In2O3 nano octahedrons by cellulose nanofiber template-assisted route and their potential application for O3 gas sensing [Internet]. Ceramics International. 2024 ; 50( 7): 10192-10202.[citado 2024 ago. 08 ] Available from: http://dx.doi.org/10.1016/j.ceramint.2023.12.329
  • Source: International Journal of Biological Macromolecules. Unidades: IQSC, EEL

    Subjects: CELULOSE, FOTOCATÁLISE, TRATAMENTO DE ÁGUA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORAES, Nícolas Perciani de et al. Cross-linked cellulose beads as an eco-friendly support for ZnO/SnO2/carbon xerogel hybrid photocatalyst: Exploring the synergy between adsorption and photocatalysis under simulated sunlight. International Journal of Biological Macromolecules, v. 254- Part2, n. art. 127826, p. 1-13, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.ijbiomac.2023.127826. Acesso em: 08 ago. 2024.
    • APA

      Moraes, N. P. de, Pereira, R. A., Silva, T. V. C. da, Silva, B. H. B. da, Assis, G. P. de, Campos, T. M. B., et al. (2024). Cross-linked cellulose beads as an eco-friendly support for ZnO/SnO2/carbon xerogel hybrid photocatalyst: Exploring the synergy between adsorption and photocatalysis under simulated sunlight. International Journal of Biological Macromolecules, 254- Part2( art. 127826), 1-13. doi:10.1016/j.ijbiomac.2023.127826
    • NLM

      Moraes NP de, Pereira RA, Silva TVC da, Silva BHB da, Assis GP de, Campos TMB, Thim GP, Lanza MR de V, Freitas L de, Rodrigues LA. Cross-linked cellulose beads as an eco-friendly support for ZnO/SnO2/carbon xerogel hybrid photocatalyst: Exploring the synergy between adsorption and photocatalysis under simulated sunlight [Internet]. International Journal of Biological Macromolecules. 2024 ;254- Part2( art. 127826): 1-13.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.ijbiomac.2023.127826
    • Vancouver

      Moraes NP de, Pereira RA, Silva TVC da, Silva BHB da, Assis GP de, Campos TMB, Thim GP, Lanza MR de V, Freitas L de, Rodrigues LA. Cross-linked cellulose beads as an eco-friendly support for ZnO/SnO2/carbon xerogel hybrid photocatalyst: Exploring the synergy between adsorption and photocatalysis under simulated sunlight [Internet]. International Journal of Biological Macromolecules. 2024 ;254- Part2( art. 127826): 1-13.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.ijbiomac.2023.127826
  • Source: Composite Interfaces. Unidades: IFSC, EESC

    Subjects: MATERIAIS, CELULOSE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRITO, Francisco Javier Goyo e SILVA, Marcelo de Assumpção Pereira da e TARPANI, José Ricardo. Enhancing the flexural properties of CFRP with vacuum-assisted deposition of cellulose microfibrils to create a multiscale reinforcement network. Composite Interfaces, v. 31, n. 2, p. 239-260, 2024Tradução . . Disponível em: https://doi.org/10.1080/09276440.2023.2248771. Acesso em: 08 ago. 2024.
    • APA

      Brito, F. J. G., Silva, M. de A. P. da, & Tarpani, J. R. (2024). Enhancing the flexural properties of CFRP with vacuum-assisted deposition of cellulose microfibrils to create a multiscale reinforcement network. Composite Interfaces, 31( 2), 239-260. doi:10.1080/09276440.2023.2248771
    • NLM

      Brito FJG, Silva M de AP da, Tarpani JR. Enhancing the flexural properties of CFRP with vacuum-assisted deposition of cellulose microfibrils to create a multiscale reinforcement network [Internet]. Composite Interfaces. 2024 ; 31( 2): 239-260.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1080/09276440.2023.2248771
    • Vancouver

      Brito FJG, Silva M de AP da, Tarpani JR. Enhancing the flexural properties of CFRP with vacuum-assisted deposition of cellulose microfibrils to create a multiscale reinforcement network [Internet]. Composite Interfaces. 2024 ; 31( 2): 239-260.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1080/09276440.2023.2248771
  • Source: International Journal of Biological Macromolecules. Unidade: IFSC

    Subjects: MATERIAIS NANOESTRUTURADOS, CELULOSE, MATERIAIS, NANOCOMPOSITOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Everton Augusto et al. Removal of propranolol by membranes fabricated with nanocellulose/ proanthocyanidin/modified tannic acid: the influence of chemical and morphologic features and mechanism study. International Journal of Biological Macromolecules, v. 256, n. Ja 2024, p. 128268-1-128268-15, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.ijbiomac.2023.128268. Acesso em: 08 ago. 2024.
    • APA

      Rodrigues, E. A., Violin, D. S., Mastelaro, V. R., Neves, T. de F., & Prediger, P. (2024). Removal of propranolol by membranes fabricated with nanocellulose/ proanthocyanidin/modified tannic acid: the influence of chemical and morphologic features and mechanism study. International Journal of Biological Macromolecules, 256( Ja 2024), 128268-1-128268-15. doi:10.1016/j.ijbiomac.2023.128268
    • NLM

      Rodrigues EA, Violin DS, Mastelaro VR, Neves T de F, Prediger P. Removal of propranolol by membranes fabricated with nanocellulose/ proanthocyanidin/modified tannic acid: the influence of chemical and morphologic features and mechanism study [Internet]. International Journal of Biological Macromolecules. 2024 ; 256( Ja 2024): 128268-1-128268-15.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.ijbiomac.2023.128268
    • Vancouver

      Rodrigues EA, Violin DS, Mastelaro VR, Neves T de F, Prediger P. Removal of propranolol by membranes fabricated with nanocellulose/ proanthocyanidin/modified tannic acid: the influence of chemical and morphologic features and mechanism study [Internet]. International Journal of Biological Macromolecules. 2024 ; 256( Ja 2024): 128268-1-128268-15.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.ijbiomac.2023.128268
  • Source: Chemistry Africa. Unidade: IFSC

    Subjects: CELULOSE, MATERIAIS NANOESTRUTURADOS, ÓPTICA NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Mário Henrique Alves et al. Functionalized cellulose nanofibrils obtained from cellulose oxypropylated. Chemistry Africa, v. 6, n. 5, p. 2309-2319, 2023Tradução . . Disponível em: https://doi.org/10.1007/s42250-022-00574-3. Acesso em: 08 ago. 2024.
    • APA

      Lima, M. H. A., Silva, M. de A. P. da, Mariano, M., Silva, M. C. da, & Menezes, A. J. de. (2023). Functionalized cellulose nanofibrils obtained from cellulose oxypropylated. Chemistry Africa, 6( 5), 2309-2319. doi:10.1007/s42250-022-00574-3
    • NLM

      Lima MHA, Silva M de AP da, Mariano M, Silva MC da, Menezes AJ de. Functionalized cellulose nanofibrils obtained from cellulose oxypropylated [Internet]. Chemistry Africa. 2023 ; 6( 5): 2309-2319.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1007/s42250-022-00574-3
    • Vancouver

      Lima MHA, Silva M de AP da, Mariano M, Silva MC da, Menezes AJ de. Functionalized cellulose nanofibrils obtained from cellulose oxypropylated [Internet]. Chemistry Africa. 2023 ; 6( 5): 2309-2319.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1007/s42250-022-00574-3
  • Source: Journal of Molecular Liquids. Unidades: IFSC, IQSC, EESC

    Subjects: LÍTIO, CELULOSE, SISAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      QUEIROZ, Bianca Groner et al. Cross-linked bio-based hydrogels generated from solutions derived from the deconstruction of sisal fibers. Journal of Molecular Liquids, v. 369, n. Ja 2023, p. 120876-1-120876-13 + supplementary material, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.molliq.2022.120876. Acesso em: 08 ago. 2024.
    • APA

      Queiroz, B. G., Ciol, H., Inada, N. M., & Frollini, E. (2023). Cross-linked bio-based hydrogels generated from solutions derived from the deconstruction of sisal fibers. Journal of Molecular Liquids, 369( Ja 2023), 120876-1-120876-13 + supplementary material. doi:10.1016/j.molliq.2022.120876
    • NLM

      Queiroz BG, Ciol H, Inada NM, Frollini E. Cross-linked bio-based hydrogels generated from solutions derived from the deconstruction of sisal fibers [Internet]. Journal of Molecular Liquids. 2023 ; 369( Ja 2023): 120876-1-120876-13 + supplementary material.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.molliq.2022.120876
    • Vancouver

      Queiroz BG, Ciol H, Inada NM, Frollini E. Cross-linked bio-based hydrogels generated from solutions derived from the deconstruction of sisal fibers [Internet]. Journal of Molecular Liquids. 2023 ; 369( Ja 2023): 120876-1-120876-13 + supplementary material.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.molliq.2022.120876
  • Source: International Journal of Biological Macromolecules: structure, function and interactions. Unidades: IQ, IQSC

    Subjects: QUÍMICA ORGÂNICA, SISAL, CELULOSE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Bruno Vinícius Manzolli et al. Cellulose acylation in homogeneous and heterogeneous media: Optimization of reactions conditions. International Journal of Biological Macromolecules: structure, function and interactions, v. 243, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.ijbiomac.2023.125256. Acesso em: 08 ago. 2024.
    • APA

      Rodrigues, B. V. M., Polez, R. T., El Seoud, O. A., & Frollini, E. (2023). Cellulose acylation in homogeneous and heterogeneous media: Optimization of reactions conditions. International Journal of Biological Macromolecules: structure, function and interactions, 243. doi:10.1016/j.ijbiomac.2023.125256
    • NLM

      Rodrigues BVM, Polez RT, El Seoud OA, Frollini E. Cellulose acylation in homogeneous and heterogeneous media: Optimization of reactions conditions [Internet]. International Journal of Biological Macromolecules: structure, function and interactions. 2023 ; 243[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.ijbiomac.2023.125256
    • Vancouver

      Rodrigues BVM, Polez RT, El Seoud OA, Frollini E. Cellulose acylation in homogeneous and heterogeneous media: Optimization of reactions conditions [Internet]. International Journal of Biological Macromolecules: structure, function and interactions. 2023 ; 243[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.ijbiomac.2023.125256
  • Source: Cellulose. Unidade: IFSC

    Subjects: CELULOSE, HIDRÓLISE, OXIDAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HIGASI, Paula Miwa Rabêlo e POLIKARPOV, Igor. Cellulose degradation by lytic polysaccharide monooxygenase fueled by an aryl-alcohol oxidase. Cellulose, v. No 2023, n. 10, p. 10057-10065 + supplementary information, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10570-023-05531-y. Acesso em: 08 ago. 2024.
    • APA

      Higasi, P. M. R., & Polikarpov, I. (2023). Cellulose degradation by lytic polysaccharide monooxygenase fueled by an aryl-alcohol oxidase. Cellulose, No 2023( 10), 10057-10065 + supplementary information. doi:10.1007/s10570-023-05531-y
    • NLM

      Higasi PMR, Polikarpov I. Cellulose degradation by lytic polysaccharide monooxygenase fueled by an aryl-alcohol oxidase [Internet]. Cellulose. 2023 ; No 2023( 10): 10057-10065 + supplementary information.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1007/s10570-023-05531-y
    • Vancouver

      Higasi PMR, Polikarpov I. Cellulose degradation by lytic polysaccharide monooxygenase fueled by an aryl-alcohol oxidase [Internet]. Cellulose. 2023 ; No 2023( 10): 10057-10065 + supplementary information.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1007/s10570-023-05531-y
  • Source: Separation and Purification Technology. Unidades: IQSC, RUSP, FZEA

    Subjects: QUÍMICA ORGÂNICA, CELULOSE, FILTRAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Rachel Passos de Oliveira et al. Composite electrospun membranes based on polyacrylonitrile and cellulose nanofibrils: relevant properties for their use as active filter layers. Separation and Purification Technology, v. 311, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.seppur.2023.123358. Acesso em: 08 ago. 2024.
    • APA

      Santos, R. P. de O., Hao, J., Innocentini, M. D. de M., Frollini, E., Savastano Júnior, H., & Rutledge, G. C. (2023). Composite electrospun membranes based on polyacrylonitrile and cellulose nanofibrils: relevant properties for their use as active filter layers. Separation and Purification Technology, 311. doi:10.1016/j.seppur.2023.123358
    • NLM

      Santos RP de O, Hao J, Innocentini MD de M, Frollini E, Savastano Júnior H, Rutledge GC. Composite electrospun membranes based on polyacrylonitrile and cellulose nanofibrils: relevant properties for their use as active filter layers [Internet]. Separation and Purification Technology. 2023 ; 311[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.seppur.2023.123358
    • Vancouver

      Santos RP de O, Hao J, Innocentini MD de M, Frollini E, Savastano Júnior H, Rutledge GC. Composite electrospun membranes based on polyacrylonitrile and cellulose nanofibrils: relevant properties for their use as active filter layers [Internet]. Separation and Purification Technology. 2023 ; 311[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.seppur.2023.123358
  • Source: Cellulose. Unidades: IFSC, IQSC

    Subjects: HIDRÓLISE, CANA-DE-AÇÚCAR, BAGAÇOS, CELULOSE, SULFONAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KANE, Aissata Ousmane et al. Enzyme-assisted production of cellulose nanofbers from bleached and bleached/sulfonated sugarcane bagasse: impact of sulfonation on nanocellulose properties and yields. Cellulose, v. 30, n. 18, p. 11507-11520, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10570-023-05600-2. Acesso em: 08 ago. 2024.
    • APA

      Kane, A. O., Scopel, E., Cortez, A. A., Rossi, B. R., Pellegrini, V. de O. A., Rezende, C. A. de, & Polikarpov, I. (2023). Enzyme-assisted production of cellulose nanofbers from bleached and bleached/sulfonated sugarcane bagasse: impact of sulfonation on nanocellulose properties and yields. Cellulose, 30( 18), 11507-11520. doi:10.1007/s10570-023-05600-2
    • NLM

      Kane AO, Scopel E, Cortez AA, Rossi BR, Pellegrini V de OA, Rezende CA de, Polikarpov I. Enzyme-assisted production of cellulose nanofbers from bleached and bleached/sulfonated sugarcane bagasse: impact of sulfonation on nanocellulose properties and yields [Internet]. Cellulose. 2023 ; 30( 18): 11507-11520.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1007/s10570-023-05600-2
    • Vancouver

      Kane AO, Scopel E, Cortez AA, Rossi BR, Pellegrini V de OA, Rezende CA de, Polikarpov I. Enzyme-assisted production of cellulose nanofbers from bleached and bleached/sulfonated sugarcane bagasse: impact of sulfonation on nanocellulose properties and yields [Internet]. Cellulose. 2023 ; 30( 18): 11507-11520.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1007/s10570-023-05600-2
  • Source: Cellulose. Unidade: IFSC

    Subjects: CELULOSE, HIDRÓLISE, OXIDAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CANNELLA, David et al. LPMO-mediated oxidation increases cellulose wettability, surface water retention and hydrolysis yield at high dry matter. Cellulose, v. 30, n. 10, p. 6259-6272 + supplementary information, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10570-023-05271-z. Acesso em: 08 ago. 2024.
    • APA

      Cannella, D., Weiss, N., Hsieh, C. -W. C., Magri, S., Zarattini, M., Kuska, J., et al. (2023). LPMO-mediated oxidation increases cellulose wettability, surface water retention and hydrolysis yield at high dry matter. Cellulose, 30( 10), 6259-6272 + supplementary information. doi:10.1007/s10570-023-05271-z
    • NLM

      Cannella D, Weiss N, Hsieh C-WC, Magri S, Zarattini M, Kuska J, Karuna N, Thygesen LG, Polikarpov I, Felby C, Jeoh T, Jorgensen H. LPMO-mediated oxidation increases cellulose wettability, surface water retention and hydrolysis yield at high dry matter [Internet]. Cellulose. 2023 ; 30( 10): 6259-6272 + supplementary information.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1007/s10570-023-05271-z
    • Vancouver

      Cannella D, Weiss N, Hsieh C-WC, Magri S, Zarattini M, Kuska J, Karuna N, Thygesen LG, Polikarpov I, Felby C, Jeoh T, Jorgensen H. LPMO-mediated oxidation increases cellulose wettability, surface water retention and hydrolysis yield at high dry matter [Internet]. Cellulose. 2023 ; 30( 10): 6259-6272 + supplementary information.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1007/s10570-023-05271-z
  • Source: World Journal of Microbiology and Biotechnology. Unidade: IFSC

    Subjects: CELULOSE, BIOTECNOLOGIA, BAGAÇOS, CANA-DE-AÇÚCAR, CLOSTRIDIUM, ENZIMAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAMARGO, Brenda Rabello de et al. Expression profiling of clostridium thermocellum B8 during the deconstruction of sugarcane bagasse and straw. World Journal of Microbiology and Biotechnology, v. 39, n. 4, p. 105-1-105-11 + supplementary information, 2023Tradução . . Disponível em: https://doi.org/10.1007/s11274-023-03546-y. Acesso em: 08 ago. 2024.
    • APA

      Camargo, B. R. de, Steindorff, A. S., Silva, L. A. da, Oliveira, A. S. de, Hamann, P. R. V., & Noronha, E. F. (2023). Expression profiling of clostridium thermocellum B8 during the deconstruction of sugarcane bagasse and straw. World Journal of Microbiology and Biotechnology, 39( 4), 105-1-105-11 + supplementary information. doi:10.1007/s11274-023-03546-y
    • NLM

      Camargo BR de, Steindorff AS, Silva LA da, Oliveira AS de, Hamann PRV, Noronha EF. Expression profiling of clostridium thermocellum B8 during the deconstruction of sugarcane bagasse and straw [Internet]. World Journal of Microbiology and Biotechnology. 2023 ; 39( 4): 105-1-105-11 + supplementary information.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1007/s11274-023-03546-y
    • Vancouver

      Camargo BR de, Steindorff AS, Silva LA da, Oliveira AS de, Hamann PRV, Noronha EF. Expression profiling of clostridium thermocellum B8 during the deconstruction of sugarcane bagasse and straw [Internet]. World Journal of Microbiology and Biotechnology. 2023 ; 39( 4): 105-1-105-11 + supplementary information.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1007/s11274-023-03546-y
  • Source: International Journal of Biological Macromolecules. Unidades: IFSC, IQSC

    Subjects: FÍSICO-QUÍMICA, CELULOSE, NANOPARTÍCULAS, SÍNTESE ORGÂNICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PORTO, Deyvid de Souza et al. Polyurethane films formation from microcrystalline cellulose as a polyol and cellulose nanocrystals as additive: reactions favored by the low viscosity of the source of isocyanate groups used. International Journal of Biological Macromolecules, v. 236, p. 124035-1-124035-14, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.ijbiomac.2023.124035. Acesso em: 08 ago. 2024.
    • APA

      Porto, D. de S., Faria, C. M. G. de, Inada, N. M., & Frollini, E. (2023). Polyurethane films formation from microcrystalline cellulose as a polyol and cellulose nanocrystals as additive: reactions favored by the low viscosity of the source of isocyanate groups used. International Journal of Biological Macromolecules, 236, 124035-1-124035-14. doi:10.1016/j.ijbiomac.2023.124035
    • NLM

      Porto D de S, Faria CMG de, Inada NM, Frollini E. Polyurethane films formation from microcrystalline cellulose as a polyol and cellulose nanocrystals as additive: reactions favored by the low viscosity of the source of isocyanate groups used [Internet]. International Journal of Biological Macromolecules. 2023 ; 236 124035-1-124035-14.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.ijbiomac.2023.124035
    • Vancouver

      Porto D de S, Faria CMG de, Inada NM, Frollini E. Polyurethane films formation from microcrystalline cellulose as a polyol and cellulose nanocrystals as additive: reactions favored by the low viscosity of the source of isocyanate groups used [Internet]. International Journal of Biological Macromolecules. 2023 ; 236 124035-1-124035-14.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.ijbiomac.2023.124035
  • Source: Cellulose. Unidades: IFSC, IQSC

    Subjects: CELULOSE, MAMONA, POLÍMEROS (MATERIAIS)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PORTO, Deyvid Souza et al. Cellulose as a polyol in the synthesis of bio-based polyurethanes with simultaneous film formation. Cellulose, v. 29, n. 11, p. 6301-6322, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10570-022-04662-y. Acesso em: 08 ago. 2024.
    • APA

      Porto, D. S., Cassales, A., Ciol, H., Inada, N. M., & Frollini, E. (2022). Cellulose as a polyol in the synthesis of bio-based polyurethanes with simultaneous film formation. Cellulose, 29( 11), 6301-6322. doi:10.1007/s10570-022-04662-y
    • NLM

      Porto DS, Cassales A, Ciol H, Inada NM, Frollini E. Cellulose as a polyol in the synthesis of bio-based polyurethanes with simultaneous film formation [Internet]. Cellulose. 2022 ; 29( 11): 6301-6322.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1007/s10570-022-04662-y
    • Vancouver

      Porto DS, Cassales A, Ciol H, Inada NM, Frollini E. Cellulose as a polyol in the synthesis of bio-based polyurethanes with simultaneous film formation [Internet]. Cellulose. 2022 ; 29( 11): 6301-6322.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1007/s10570-022-04662-y
  • Source: The Journal of Membrane Science. Unidades: IQSC, FZEA

    Subjects: FÍSICO-QUÍMICA, MATERIAIS COMPÓSITOS, CELULOSE, AEROSSOL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Rachel Passos de Oliveira et al. Aerosol filtration performance of electrospun membranes comprising polyacrylonitrile and cellulose nanocrystals. The Journal of Membrane Science, v. 650, p. 120392, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.memsci.2022.120392. Acesso em: 08 ago. 2024.
    • APA

      Santos, R. P. de O., Hao, J., Frollini, E., Savastano Júnior, H., & Rutledge, G. C. (2022). Aerosol filtration performance of electrospun membranes comprising polyacrylonitrile and cellulose nanocrystals. The Journal of Membrane Science, 650, 120392. doi:10.1016/j.memsci.2022.120392
    • NLM

      Santos RP de O, Hao J, Frollini E, Savastano Júnior H, Rutledge GC. Aerosol filtration performance of electrospun membranes comprising polyacrylonitrile and cellulose nanocrystals [Internet]. The Journal of Membrane Science. 2022 ; 650 120392.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.memsci.2022.120392
    • Vancouver

      Santos RP de O, Hao J, Frollini E, Savastano Júnior H, Rutledge GC. Aerosol filtration performance of electrospun membranes comprising polyacrylonitrile and cellulose nanocrystals [Internet]. The Journal of Membrane Science. 2022 ; 650 120392.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.memsci.2022.120392
  • Source: Industrial Crops and Products. Unidade: IQSC

    Subjects: FÍSICO-QUÍMICA ORGÂNICA, CELULOSE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORDEIRO, Luciano e PRADO, Ana Paula Glavocic de Almeida e CURVELO, Antonio Aprigio da Silva. Ductile composite films of polyethylene and low grammage paper. Industrial Crops and Products, v. 184, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.indcrop.2022.115039. Acesso em: 08 ago. 2024.
    • APA

      Cordeiro, L., Prado, A. P. G. de A., & Curvelo, A. A. da S. (2022). Ductile composite films of polyethylene and low grammage paper. Industrial Crops and Products, 184. doi:10.1016/j.indcrop.2022.115039
    • NLM

      Cordeiro L, Prado APG de A, Curvelo AA da S. Ductile composite films of polyethylene and low grammage paper [Internet]. Industrial Crops and Products. 2022 ; 184[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.indcrop.2022.115039
    • Vancouver

      Cordeiro L, Prado APG de A, Curvelo AA da S. Ductile composite films of polyethylene and low grammage paper [Internet]. Industrial Crops and Products. 2022 ; 184[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.indcrop.2022.115039
  • Source: Carbohydrate Polymers. Unidade: IFSC

    Subjects: CELULOSE, BAGAÇOS, CANA-DE-AÇÚCAR, MATERIAIS NANOESTRUTURADOS, ENZIMAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAÚJO, Evandro Ares de et al. Impact of cellulose properties on enzymatic degradation by bacterial GH48 enzymes: structural and mechanistic insights from processive Bacillus licheniformis Cel48B cellulase. Carbohydrate Polymers, v. 264, p. 118059-1-118059-13, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.carbpol.2021.118059. Acesso em: 08 ago. 2024.
    • APA

      Araújo, E. A. de, Dias, A. H. S., Kadowaki, M. A. S., Piyadov, V., Pellegrini, V. de O. A., Urio, M. B., et al. (2021). Impact of cellulose properties on enzymatic degradation by bacterial GH48 enzymes: structural and mechanistic insights from processive Bacillus licheniformis Cel48B cellulase. Carbohydrate Polymers, 264, 118059-1-118059-13. doi:10.1016/j.carbpol.2021.118059
    • NLM

      Araújo EA de, Dias AHS, Kadowaki MAS, Piyadov V, Pellegrini V de OA, Urio MB, Ramos LP, Skaf MS, Polikarpov I. Impact of cellulose properties on enzymatic degradation by bacterial GH48 enzymes: structural and mechanistic insights from processive Bacillus licheniformis Cel48B cellulase [Internet]. Carbohydrate Polymers. 2021 ; 264 118059-1-118059-13.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.carbpol.2021.118059
    • Vancouver

      Araújo EA de, Dias AHS, Kadowaki MAS, Piyadov V, Pellegrini V de OA, Urio MB, Ramos LP, Skaf MS, Polikarpov I. Impact of cellulose properties on enzymatic degradation by bacterial GH48 enzymes: structural and mechanistic insights from processive Bacillus licheniformis Cel48B cellulase [Internet]. Carbohydrate Polymers. 2021 ; 264 118059-1-118059-13.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.carbpol.2021.118059
  • Source: International Journal of Biological Macromolecules: structure, function and interactions. Unidade: IQSC

    Subjects: CELULOSE, ENZIMAS, HIDRÓLISE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RANA, Ashvinder Kumar e FROLLINI, Elisabete e THAKUR, Vijay Kumar. Cellulose nanocrystals:: Pretreatments, preparation strategies, and surface functionalization. International Journal of Biological Macromolecules: structure, function and interactions, v. 182, p. 1554–1581, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.ijbiomac.2021.05.119. Acesso em: 08 ago. 2024.
    • APA

      Rana, A. K., Frollini, E., & Thakur, V. K. (2021). Cellulose nanocrystals:: Pretreatments, preparation strategies, and surface functionalization. International Journal of Biological Macromolecules: structure, function and interactions, 182, 1554–1581. doi:10.1016/j.ijbiomac.2021.05.119
    • NLM

      Rana AK, Frollini E, Thakur VK. Cellulose nanocrystals:: Pretreatments, preparation strategies, and surface functionalization [Internet]. International Journal of Biological Macromolecules: structure, function and interactions. 2021 ;182 1554–1581.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.ijbiomac.2021.05.119
    • Vancouver

      Rana AK, Frollini E, Thakur VK. Cellulose nanocrystals:: Pretreatments, preparation strategies, and surface functionalization [Internet]. International Journal of Biological Macromolecules: structure, function and interactions. 2021 ;182 1554–1581.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.ijbiomac.2021.05.119
  • Source: Computational and Structural Biotechnology Journal. Unidade: IFSC

    Subjects: ENZIMAS, CELULOSE, BIOTECNOLOGIA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRIGANTI, Lorenzo et al. Structural and molecular dynamics investigations of ligand stabilization via secondary binding site interactions in Paenibacillus xylanivorans GH11 xylanase. Computational and Structural Biotechnology Journal, v. 19, p. 1557-1566, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.csbj.2021.03.002. Acesso em: 08 ago. 2024.
    • APA

      Briganti, L., Capetti, C. C. de M., Pellegrini, V. de O. A., Ghio, S., Campos, E., Nascimento, A. S., & Polikarpov, I. (2021). Structural and molecular dynamics investigations of ligand stabilization via secondary binding site interactions in Paenibacillus xylanivorans GH11 xylanase. Computational and Structural Biotechnology Journal, 19, 1557-1566. doi:10.1016/j.csbj.2021.03.002
    • NLM

      Briganti L, Capetti CC de M, Pellegrini V de OA, Ghio S, Campos E, Nascimento AS, Polikarpov I. Structural and molecular dynamics investigations of ligand stabilization via secondary binding site interactions in Paenibacillus xylanivorans GH11 xylanase [Internet]. Computational and Structural Biotechnology Journal. 2021 ; 19 1557-1566.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.csbj.2021.03.002
    • Vancouver

      Briganti L, Capetti CC de M, Pellegrini V de OA, Ghio S, Campos E, Nascimento AS, Polikarpov I. Structural and molecular dynamics investigations of ligand stabilization via secondary binding site interactions in Paenibacillus xylanivorans GH11 xylanase [Internet]. Computational and Structural Biotechnology Journal. 2021 ; 19 1557-1566.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1016/j.csbj.2021.03.002
  • Source: World Journal of Microbiology and Biotechnology. Unidade: IFSC

    Subjects: CELULOSE, BIOTECNOLOGIA, BAGAÇOS, CANA-DE-AÇÚCAR, MATERIAIS NANOESTRUTURADOS, ENZIMAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAPETTI, Caio Cesar de Mello et al. Recent advances in the enzymatic production and applications of xylooligosaccharides. World Journal of Microbiology and Biotechnology, v. 37, n. 10, p. 169-1-169-12, 2021Tradução . . Disponível em: https://doi.org/10.1007/s11274-021-03139-7. Acesso em: 08 ago. 2024.
    • APA

      Capetti, C. C. de M., Vacilotto, M. M., Dabul, A. N. G., Sepulchro, A. G. V., Pellegrini, V. de O. A., & Polikarpov, I. (2021). Recent advances in the enzymatic production and applications of xylooligosaccharides. World Journal of Microbiology and Biotechnology, 37( 10), 169-1-169-12. doi:10.1007/s11274-021-03139-7
    • NLM

      Capetti CC de M, Vacilotto MM, Dabul ANG, Sepulchro AGV, Pellegrini V de OA, Polikarpov I. Recent advances in the enzymatic production and applications of xylooligosaccharides [Internet]. World Journal of Microbiology and Biotechnology. 2021 ; 37( 10): 169-1-169-12.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1007/s11274-021-03139-7
    • Vancouver

      Capetti CC de M, Vacilotto MM, Dabul ANG, Sepulchro AGV, Pellegrini V de OA, Polikarpov I. Recent advances in the enzymatic production and applications of xylooligosaccharides [Internet]. World Journal of Microbiology and Biotechnology. 2021 ; 37( 10): 169-1-169-12.[citado 2024 ago. 08 ] Available from: https://doi.org/10.1007/s11274-021-03139-7

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024