Filtros : "weak solutions" Limpar

Filtros



Refine with date range


  • Source: Communications in Contemporary Mathematics. Unidade: IME

    Subjects: MÉTODOS VARIACIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AFONSO, Danilo Gregorin e SICILIANO, Gaetano. Normalized solutions to a Schrödinger–Bopp–Podolsky system under Neumann boundary conditions. Communications in Contemporary Mathematics, v. 25, n. 2, 2023Tradução . . Disponível em: https://doi.org/10.1142/S0219199721501005. Acesso em: 24 jan. 2026.
    • APA

      Afonso, D. G., & Siciliano, G. (2023). Normalized solutions to a Schrödinger–Bopp–Podolsky system under Neumann boundary conditions. Communications in Contemporary Mathematics, 25( 2). doi:10.1142/S0219199721501005
    • NLM

      Afonso DG, Siciliano G. Normalized solutions to a Schrödinger–Bopp–Podolsky system under Neumann boundary conditions [Internet]. Communications in Contemporary Mathematics. 2023 ; 25( 2):[citado 2026 jan. 24 ] Available from: https://doi.org/10.1142/S0219199721501005
    • Vancouver

      Afonso DG, Siciliano G. Normalized solutions to a Schrödinger–Bopp–Podolsky system under Neumann boundary conditions [Internet]. Communications in Contemporary Mathematics. 2023 ; 25( 2):[citado 2026 jan. 24 ] Available from: https://doi.org/10.1142/S0219199721501005
  • Unidade: IME

    Assunto: MATEMATICA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AFONSO, Danilo Gregorin. Normalized solutions for a Schrödinger-Bopp-Podolsky system. 2020. Dissertação (Mestrado) – Universidade de São Paulo, São Paulo, 2020. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-22042020-123659/. Acesso em: 24 jan. 2026.
    • APA

      Afonso, D. G. (2020). Normalized solutions for a Schrödinger-Bopp-Podolsky system (Dissertação (Mestrado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-22042020-123659/
    • NLM

      Afonso DG. Normalized solutions for a Schrödinger-Bopp-Podolsky system [Internet]. 2020 ;[citado 2026 jan. 24 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-22042020-123659/
    • Vancouver

      Afonso DG. Normalized solutions for a Schrödinger-Bopp-Podolsky system [Internet]. 2020 ;[citado 2026 jan. 24 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-22042020-123659/
  • Source: Transactions of the American Mathematical Society. Unidade: ICMC

    Subjects: ATRATORES, MECÂNICA DOS SÓLIDOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LASIECKA, Irena e MA, To Fu e MONTEIRO, Rodrigo Nunes. Global smooth attractors for dynamics of thermal shallow shells without vertical dissipation. Transactions of the American Mathematical Society, v. 371, n. 11, p. 8051-8096, 2019Tradução . . Disponível em: https://doi.org/10.1090/tran/7756. Acesso em: 24 jan. 2026.
    • APA

      Lasiecka, I., Ma, T. F., & Monteiro, R. N. (2019). Global smooth attractors for dynamics of thermal shallow shells without vertical dissipation. Transactions of the American Mathematical Society, 371( 11), 8051-8096. doi:10.1090/tran/7756
    • NLM

      Lasiecka I, Ma TF, Monteiro RN. Global smooth attractors for dynamics of thermal shallow shells without vertical dissipation [Internet]. Transactions of the American Mathematical Society. 2019 ; 371( 11): 8051-8096.[citado 2026 jan. 24 ] Available from: https://doi.org/10.1090/tran/7756
    • Vancouver

      Lasiecka I, Ma TF, Monteiro RN. Global smooth attractors for dynamics of thermal shallow shells without vertical dissipation [Internet]. Transactions of the American Mathematical Society. 2019 ; 371( 11): 8051-8096.[citado 2026 jan. 24 ] Available from: https://doi.org/10.1090/tran/7756

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026