Filtros : "vector fields" Removido: "2007" Limpar

Filtros



Refine with date range


  • Source: Discrete and Continuous Dynamical Systems : Series B. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS

    Versão AceitaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e VALLS, Claudia. On the Abel differential equations of third kind. Discrete and Continuous Dynamical Systems : Series B, v. 25, n. 5, p. 1821-1834, 2020Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2020004. Acesso em: 16 fev. 2026.
    • APA

      Oliveira, R. D. dos S., & Valls, C. (2020). On the Abel differential equations of third kind. Discrete and Continuous Dynamical Systems : Series B, 25( 5), 1821-1834. doi:10.3934/dcdsb.2020004
    • NLM

      Oliveira RD dos S, Valls C. On the Abel differential equations of third kind [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2020 ; 25( 5): 1821-1834.[citado 2026 fev. 16 ] Available from: https://doi.org/10.3934/dcdsb.2020004
    • Vancouver

      Oliveira RD dos S, Valls C. On the Abel differential equations of third kind [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2020 ; 25( 5): 1821-1834.[citado 2026 fev. 16 ] Available from: https://doi.org/10.3934/dcdsb.2020004
  • Source: Complex Variables and Elliptic Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAMPANA, C e DATTORI DA SILVA, Paulo Leandro e MEZIANI, A. Riemann–Hilbert problem for a class of hypocomplex vector fields. Complex Variables and Elliptic Equations, v. 61, n. 12, p. 1656-1667, 2016Tradução . . Disponível em: https://doi.org/10.1080/17476933.2016.1197917. Acesso em: 16 fev. 2026.
    • APA

      Campana, C., Dattori da Silva, P. L., & Meziani, A. (2016). Riemann–Hilbert problem for a class of hypocomplex vector fields. Complex Variables and Elliptic Equations, 61( 12), 1656-1667. doi:10.1080/17476933.2016.1197917
    • NLM

      Campana C, Dattori da Silva PL, Meziani A. Riemann–Hilbert problem for a class of hypocomplex vector fields [Internet]. Complex Variables and Elliptic Equations. 2016 ; 61( 12): 1656-1667.[citado 2026 fev. 16 ] Available from: https://doi.org/10.1080/17476933.2016.1197917
    • Vancouver

      Campana C, Dattori da Silva PL, Meziani A. Riemann–Hilbert problem for a class of hypocomplex vector fields [Internet]. Complex Variables and Elliptic Equations. 2016 ; 61( 12): 1656-1667.[citado 2026 fev. 16 ] Available from: https://doi.org/10.1080/17476933.2016.1197917
  • Source: Astérisque. Conference titles: International Conference on Dynamical Systems. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VIDALON, Carlos Teobaldo Gutiérrez e SARMIENTO, Alberto. Injectivity of 'C POT. 1' maps 'R POT. 2' 'SETA' 'R POT. 2' at infinity and planar vector fields. Astérisque. Paris: Société Mathématique de France. . Acesso em: 16 fev. 2026. , 2003
    • APA

      Vidalon, C. T. G., & Sarmiento, A. (2003). Injectivity of 'C POT. 1' maps 'R POT. 2' 'SETA' 'R POT. 2' at infinity and planar vector fields. Astérisque. Paris: Société Mathématique de France.
    • NLM

      Vidalon CTG, Sarmiento A. Injectivity of 'C POT. 1' maps 'R POT. 2' 'SETA' 'R POT. 2' at infinity and planar vector fields. Astérisque. 2003 ; 287 89-102.[citado 2026 fev. 16 ]
    • Vancouver

      Vidalon CTG, Sarmiento A. Injectivity of 'C POT. 1' maps 'R POT. 2' 'SETA' 'R POT. 2' at infinity and planar vector fields. Astérisque. 2003 ; 287 89-102.[citado 2026 fev. 16 ]

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026