Injectivity of 'C POT. 1' maps 'R POT. 2' 'SETA' 'R POT. 2' at infinity and planar vector fields (2003)
- Authors:
- Autor USP: VIDALON, CARLOS TEOBALDO GUTIERREZ - ICMC
- Unidade: ICMC
- Subjects: SISTEMAS DINÂMICOS; TEORIA ERGÓDICA
- Keywords: injectivity; reeb component; vector fields
- Language: Inglês
- Imprenta:
- Publisher: Société Mathématique de France
- Publisher place: Paris
- Date published: 2003
- Source:
- Título: Astérisque
- ISSN: 0303-1179
- Volume/Número/Paginação/Ano: v. 287, p. 89-102, 2003
- Conference titles: International Conference on Dynamical Systems
-
ABNT
VIDALON, Carlos Teobaldo Gutiérrez e SARMIENTO, Alberto. Injectivity of 'C POT. 1' maps 'R POT. 2' 'SETA' 'R POT. 2' at infinity and planar vector fields. Astérisque. Paris: Société Mathématique de France. . Acesso em: 10 jan. 2026. , 2003 -
APA
Vidalon, C. T. G., & Sarmiento, A. (2003). Injectivity of 'C POT. 1' maps 'R POT. 2' 'SETA' 'R POT. 2' at infinity and planar vector fields. Astérisque. Paris: Société Mathématique de France. -
NLM
Vidalon CTG, Sarmiento A. Injectivity of 'C POT. 1' maps 'R POT. 2' 'SETA' 'R POT. 2' at infinity and planar vector fields. Astérisque. 2003 ; 287 89-102.[citado 2026 jan. 10 ] -
Vancouver
Vidalon CTG, Sarmiento A. Injectivity of 'C POT. 1' maps 'R POT. 2' 'SETA' 'R POT. 2' at infinity and planar vector fields. Astérisque. 2003 ; 287 89-102.[citado 2026 jan. 10 ] - On nonsingular polynomial maps of `RPOT.2´
- Dynamic and ergodic properties of interval exchange transformations, an introduction
- A class of topological foliations S'pot.2' that are topologically equivalent to polynomial vector fields
- Planar embeddings with a globally attracting fixed point
- Quartic differential forms and transversal nets with singularities
- Global asymptotic stability for differentiable vector fields of R2
- Ovaloids of R³ and their umbilics: a differential equation approach
- On the 'c pot.r'-closing lemma
- Simple umbilic points on surfaces immersed in 'R POT.4'
- Darbouxian integrabililty for polynomial vector fields on the 2-dimensional sphere
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas