Filtros : "shape optimization" Removido: "PROBLEMAS INVERSOS" Limpar

Filtros



Refine with date range


  • Source: Control and Cybernetics. Unidade: IME

    Assunto: MATEMÁTICA APLICADA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAURAIN, Antoine. Analysis and application of a lower envelope method for sharp-interface multiphase problems. Control and Cybernetics, v. 53, n. 1, p. 189-229, 2025Tradução . . Disponível em: https://doi.org/10.2478/candc-2024-0009. Acesso em: 30 jan. 2026.
    • APA

      Laurain, A. (2025). Analysis and application of a lower envelope method for sharp-interface multiphase problems. Control and Cybernetics, 53( 1), 189-229. doi:10.2478/candc-2024-0009
    • NLM

      Laurain A. Analysis and application of a lower envelope method for sharp-interface multiphase problems [Internet]. Control and Cybernetics. 2025 ; 53( 1): 189-229.[citado 2026 jan. 30 ] Available from: https://doi.org/10.2478/candc-2024-0009
    • Vancouver

      Laurain A. Analysis and application of a lower envelope method for sharp-interface multiphase problems [Internet]. Control and Cybernetics. 2025 ; 53( 1): 189-229.[citado 2026 jan. 30 ] Available from: https://doi.org/10.2478/candc-2024-0009
  • Source: Mathematics of Operations Research. Unidade: IME

    Subjects: CÁLCULO DE VARIAÇÕES, CONTROLE ÓTIMO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e GARDENGHI, John Lenon Cardoso e LAURAIN, Antoine. Bounds on the optimal radius when covering a set with minimum radius identical disks. Mathematics of Operations Research, v. 49, n. 3, p. 1855-1889, 2024Tradução . . Disponível em: https://doi.org/10.1287/moor.2022.0104. Acesso em: 30 jan. 2026.
    • APA

      Birgin, E. J. G., Gardenghi, J. L. C., & Laurain, A. (2024). Bounds on the optimal radius when covering a set with minimum radius identical disks. Mathematics of Operations Research, 49( 3), 1855-1889. doi:10.1287/moor.2022.0104
    • NLM

      Birgin EJG, Gardenghi JLC, Laurain A. Bounds on the optimal radius when covering a set with minimum radius identical disks [Internet]. Mathematics of Operations Research. 2024 ; 49( 3): 1855-1889.[citado 2026 jan. 30 ] Available from: https://doi.org/10.1287/moor.2022.0104
    • Vancouver

      Birgin EJG, Gardenghi JLC, Laurain A. Bounds on the optimal radius when covering a set with minimum radius identical disks [Internet]. Mathematics of Operations Research. 2024 ; 49( 3): 1855-1889.[citado 2026 jan. 30 ] Available from: https://doi.org/10.1287/moor.2022.0104
  • Source: SIAM Journal on Mathematical Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, CÁLCULO DE VARIAÇÕES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, Pêdra Daricléa Santos et al. Spectral partition problems with volume and inclusion constraints. SIAM Journal on Mathematical Analysis, v. 56, n. 6, p. 7136-7169, 2024Tradução . . Disponível em: https://doi.org/10.1137/23M161553X. Acesso em: 30 jan. 2026.
    • APA

      Andrade, P. D. S., Moreira dos Santos, E., Santos, M., & Tavares, H. (2024). Spectral partition problems with volume and inclusion constraints. SIAM Journal on Mathematical Analysis, 56( 6), 7136-7169. doi:10.1137/23M161553X
    • NLM

      Andrade PDS, Moreira dos Santos E, Santos M, Tavares H. Spectral partition problems with volume and inclusion constraints [Internet]. SIAM Journal on Mathematical Analysis. 2024 ; 56( 6): 7136-7169.[citado 2026 jan. 30 ] Available from: https://doi.org/10.1137/23M161553X
    • Vancouver

      Andrade PDS, Moreira dos Santos E, Santos M, Tavares H. Spectral partition problems with volume and inclusion constraints [Internet]. SIAM Journal on Mathematical Analysis. 2024 ; 56( 6): 7136-7169.[citado 2026 jan. 30 ] Available from: https://doi.org/10.1137/23M161553X
  • Source: Philosophical Transactions of the Royal Society A : mathematical, physical and engineering sciences. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, PROBLEMAS VARIACIONAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAURAIN, Antoine e LOPES, Pedro Tavares Paes. On second-order tensor representation of derivatives in shape optimization. Philosophical Transactions of the Royal Society A : mathematical, physical and engineering sciences, v. 382, n. 2277, p. 1-21, 2024Tradução . . Disponível em: https://doi.org/10.1098/rsta.2023.0300. Acesso em: 30 jan. 2026.
    • APA

      Laurain, A., & Lopes, P. T. P. (2024). On second-order tensor representation of derivatives in shape optimization. Philosophical Transactions of the Royal Society A : mathematical, physical and engineering sciences, 382( 2277), 1-21. doi:10.1098/rsta.2023.0300
    • NLM

      Laurain A, Lopes PTP. On second-order tensor representation of derivatives in shape optimization [Internet]. Philosophical Transactions of the Royal Society A : mathematical, physical and engineering sciences. 2024 ; 382( 2277): 1-21.[citado 2026 jan. 30 ] Available from: https://doi.org/10.1098/rsta.2023.0300
    • Vancouver

      Laurain A, Lopes PTP. On second-order tensor representation of derivatives in shape optimization [Internet]. Philosophical Transactions of the Royal Society A : mathematical, physical and engineering sciences. 2024 ; 382( 2277): 1-21.[citado 2026 jan. 30 ] Available from: https://doi.org/10.1098/rsta.2023.0300
  • Source: SIAM Journal on Control and Optimization. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, OTIMIZAÇÃO MATEMÁTICA, CÁLCULO DE VARIAÇÕES, DESIGUALDADES VARIACIONAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAURAIN, Antoine e WINCKLER, Malte e YOUSEPT, Irwin. Shape optimization for superconductors governed by H(curl)-elliptic variational inequalities. SIAM Journal on Control and Optimization, v. 59, n. 3, p. 2247-2272, 2021Tradução . . Disponível em: https://doi.org/10.1137/19M1294150. Acesso em: 30 jan. 2026.
    • APA

      Laurain, A., Winckler, M., & Yousept, I. (2021). Shape optimization for superconductors governed by H(curl)-elliptic variational inequalities. SIAM Journal on Control and Optimization, 59( 3), 2247-2272. doi:10.1137/19M1294150
    • NLM

      Laurain A, Winckler M, Yousept I. Shape optimization for superconductors governed by H(curl)-elliptic variational inequalities [Internet]. SIAM Journal on Control and Optimization. 2021 ; 59( 3): 2247-2272.[citado 2026 jan. 30 ] Available from: https://doi.org/10.1137/19M1294150
    • Vancouver

      Laurain A, Winckler M, Yousept I. Shape optimization for superconductors governed by H(curl)-elliptic variational inequalities [Internet]. SIAM Journal on Control and Optimization. 2021 ; 59( 3): 2247-2272.[citado 2026 jan. 30 ] Available from: https://doi.org/10.1137/19M1294150
  • Source: SIAM Journal on Mathematical Analysis. Unidade: IME

    Subjects: ANÁLISE ASSINTÓTICA, OTIMIZAÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAURAIN, Antoine. Analyzing smooth and singular domain perturbations in level set methods. SIAM Journal on Mathematical Analysis, v. 50, n. 4, p. 4327-4370, 2018Tradução . . Disponível em: https://doi.org/10.1137/17m1118956. Acesso em: 30 jan. 2026.
    • APA

      Laurain, A. (2018). Analyzing smooth and singular domain perturbations in level set methods. SIAM Journal on Mathematical Analysis, 50( 4), 4327-4370. doi:10.1137/17m1118956
    • NLM

      Laurain A. Analyzing smooth and singular domain perturbations in level set methods [Internet]. SIAM Journal on Mathematical Analysis. 2018 ; 50( 4): 4327-4370.[citado 2026 jan. 30 ] Available from: https://doi.org/10.1137/17m1118956
    • Vancouver

      Laurain A. Analyzing smooth and singular domain perturbations in level set methods [Internet]. SIAM Journal on Mathematical Analysis. 2018 ; 50( 4): 4327-4370.[citado 2026 jan. 30 ] Available from: https://doi.org/10.1137/17m1118956

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026