Filtros : "regularity lemma" Limpar

Filtros



Refine with date range


  • Source: Electronic Notes in Discrete Mathematics. Unidade: IME

    Assunto: GRAFOS ALEATÓRIOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHAYAKAWA, Yoshiharu e KONSTADINIDIS, Pavlos Bahia e MOTA, Guilherme Oliveira. On an anti-Ramsey property of random graphs. Electronic Notes in Discrete Mathematics, v. 37, p. 237-242, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.endm.2011.05.041. Acesso em: 23 jan. 2026.
    • APA

      Kohayakawa, Y., Konstadinidis, P. B., & Mota, G. O. (2011). On an anti-Ramsey property of random graphs. Electronic Notes in Discrete Mathematics, 37, 237-242. doi:10.1016/j.endm.2011.05.041
    • NLM

      Kohayakawa Y, Konstadinidis PB, Mota GO. On an anti-Ramsey property of random graphs [Internet]. Electronic Notes in Discrete Mathematics. 2011 ; 37 237-242.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1016/j.endm.2011.05.041
    • Vancouver

      Kohayakawa Y, Konstadinidis PB, Mota GO. On an anti-Ramsey property of random graphs [Internet]. Electronic Notes in Discrete Mathematics. 2011 ; 37 237-242.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1016/j.endm.2011.05.041
  • Source: Proceedings of the National Academy of Sciences of the United States of America. Unidade: IME

    Assunto: TEORIA DOS GRAFOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODL, Vojtech et al. The hypergraph regularity method and its applications. Proceedings of the National Academy of Sciences of the United States of America, v. 102, n. 23, p. 8109-8113, 2005Tradução . . Disponível em: https://doi.org/10.1073/pnas.0502771102. Acesso em: 23 jan. 2026.
    • APA

      Rodl, V., Nagle, B., Skokan, J., Schatcht, M., & Kohayakawa, Y. (2005). The hypergraph regularity method and its applications. Proceedings of the National Academy of Sciences of the United States of America, 102( 23), 8109-8113. doi:10.1073/pnas.0502771102
    • NLM

      Rodl V, Nagle B, Skokan J, Schatcht M, Kohayakawa Y. The hypergraph regularity method and its applications [Internet]. Proceedings of the National Academy of Sciences of the United States of America. 2005 ; 102( 23): 8109-8113.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1073/pnas.0502771102
    • Vancouver

      Rodl V, Nagle B, Skokan J, Schatcht M, Kohayakawa Y. The hypergraph regularity method and its applications [Internet]. Proceedings of the National Academy of Sciences of the United States of America. 2005 ; 102( 23): 8109-8113.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1073/pnas.0502771102
  • Source: Electronic Notes in Discrete Mathematics. Conference titles: Brazilian Symposium on Graphs, Algorithms and Combinatorics - GRACO. Unidade: IME

    Assunto: COMBINATÓRIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHAYAKAWA, Yoshiharu e SIMONOVITS, Maklós e SKOKAN, Jozef. The 3-colored Ramsey number of odd cycles. Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. Disponível em: https://doi.org/10.1016/j.endm.2005.05.053. Acesso em: 23 jan. 2026. , 2005
    • APA

      Kohayakawa, Y., Simonovits, M., & Skokan, J. (2005). The 3-colored Ramsey number of odd cycles. Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. doi:10.1016/j.endm.2005.05.053
    • NLM

      Kohayakawa Y, Simonovits M, Skokan J. The 3-colored Ramsey number of odd cycles [Internet]. Electronic Notes in Discrete Mathematics. 2005 ; 19 397-402.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1016/j.endm.2005.05.053
    • Vancouver

      Kohayakawa Y, Simonovits M, Skokan J. The 3-colored Ramsey number of odd cycles [Internet]. Electronic Notes in Discrete Mathematics. 2005 ; 19 397-402.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1016/j.endm.2005.05.053
  • Source: Proceedings. Conference titles: Latin American Symposium on Theoretical Informatics - LATIN. Unidade: IME

    Assunto: ALGORITMOS E ESTRUTURAS DE DADOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHAYAKAWA, Yoshiharu e RODL, Vojtech e SKOKAN, J. Equivalent conditions for regularity. 2000, Anais.. Berlin: Springer, 2000. Disponível em: https://doi.org/10.1007/10719839_5. Acesso em: 23 jan. 2026.
    • APA

      Kohayakawa, Y., Rodl, V., & Skokan, J. (2000). Equivalent conditions for regularity. In Proceedings. Berlin: Springer. doi:10.1007/10719839_5
    • NLM

      Kohayakawa Y, Rodl V, Skokan J. Equivalent conditions for regularity [Internet]. Proceedings. 2000 ;[citado 2026 jan. 23 ] Available from: https://doi.org/10.1007/10719839_5
    • Vancouver

      Kohayakawa Y, Rodl V, Skokan J. Equivalent conditions for regularity [Internet]. Proceedings. 2000 ;[citado 2026 jan. 23 ] Available from: https://doi.org/10.1007/10719839_5
  • Source: Acta Arithmetica. Unidade: IME

    Subjects: TEORIA DOS NÚMEROS, COMBINATÓRIA, TEORIA DOS GRAFOS, TEORIA DA PROBABILIDADE, PROCESSOS ESTOCÁSTICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHAYAKAWA, Yoshiharu e LUCZAK, Tomasz e RODL, Vojtech. Arithmetic progressions of length three in subsets of a random set. Acta Arithmetica, v. 75, n. 2, p. 133-163, 1996Tradução . . Disponível em: https://doi.org/10.4064/aa-75-2-133-163. Acesso em: 23 jan. 2026.
    • APA

      Kohayakawa, Y., Luczak, T., & Rodl, V. (1996). Arithmetic progressions of length three in subsets of a random set. Acta Arithmetica, 75( 2), 133-163. doi:10.4064/aa-75-2-133-163
    • NLM

      Kohayakawa Y, Luczak T, Rodl V. Arithmetic progressions of length three in subsets of a random set [Internet]. Acta Arithmetica. 1996 ; 75( 2): 133-163.[citado 2026 jan. 23 ] Available from: https://doi.org/10.4064/aa-75-2-133-163
    • Vancouver

      Kohayakawa Y, Luczak T, Rodl V. Arithmetic progressions of length three in subsets of a random set [Internet]. Acta Arithmetica. 1996 ; 75( 2): 133-163.[citado 2026 jan. 23 ] Available from: https://doi.org/10.4064/aa-75-2-133-163

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026