Filtros : "rate function" Limpar

Filtros



Refine with date range


  • Source: Communications in Mathematics. Unidade: IME

    Subjects: PROBABILIDADE, PROCESSOS ESTOCÁSTICOS, PROCESSOS DE MARKOV

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOGACHOV, Artem e LOGACHOVA, Olga e YAMBARTSEV, Anatoli. Moderate, large and super large deviations principles for Poisson process with uniform catastrophes. Communications in Mathematics, v. 33, n. paper 8, p. 1-20, 2025Tradução . . Disponível em: https://doi.org/10.46298/cm.14900. Acesso em: 02 jan. 2026.
    • APA

      Logachov, A., Logachova, O., & Yambartsev, A. (2025). Moderate, large and super large deviations principles for Poisson process with uniform catastrophes. Communications in Mathematics, 33( paper 8), 1-20. doi:10.46298/cm.14900
    • NLM

      Logachov A, Logachova O, Yambartsev A. Moderate, large and super large deviations principles for Poisson process with uniform catastrophes [Internet]. Communications in Mathematics. 2025 ; 33( paper 8): 1-20.[citado 2026 jan. 02 ] Available from: https://doi.org/10.46298/cm.14900
    • Vancouver

      Logachov A, Logachova O, Yambartsev A. Moderate, large and super large deviations principles for Poisson process with uniform catastrophes [Internet]. Communications in Mathematics. 2025 ; 33( paper 8): 1-20.[citado 2026 jan. 02 ] Available from: https://doi.org/10.46298/cm.14900
  • Source: Markov Processes And Related Fields. Unidade: IME

    Assunto: PROCESSOS DE MARKOV

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PECHERSKY, Eugene e PRESMAN, Ernst L'vovich e IAMBARTSEV, Anatoli. Sojourn times of Markov symmetric processes in continuous time. Markov Processes And Related Fields, v. 29, n. 2, p. 199-224, 2023Tradução . . Disponível em: https://math-mprf.org/journal/articles/id1666/. Acesso em: 02 jan. 2026.
    • APA

      Pechersky, E., Presman, E. L. 'vovich, & Iambartsev, A. (2023). Sojourn times of Markov symmetric processes in continuous time. Markov Processes And Related Fields, 29( 2), 199-224. Recuperado de https://math-mprf.org/journal/articles/id1666/
    • NLM

      Pechersky E, Presman EL'vovich, Iambartsev A. Sojourn times of Markov symmetric processes in continuous time [Internet]. Markov Processes And Related Fields. 2023 ; 29( 2): 199-224.[citado 2026 jan. 02 ] Available from: https://math-mprf.org/journal/articles/id1666/
    • Vancouver

      Pechersky E, Presman EL'vovich, Iambartsev A. Sojourn times of Markov symmetric processes in continuous time [Internet]. Markov Processes And Related Fields. 2023 ; 29( 2): 199-224.[citado 2026 jan. 02 ] Available from: https://math-mprf.org/journal/articles/id1666/
  • Source: ESAIM: Probability and Statistics. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOGACHOV, A. e MOGULSKII, Anatolii e IAMBARTSEV, Anatoli. Limit theorems for chains with unbounded variable length memory which satisfy Cramer condition. ESAIM: Probability and Statistics, v. 26, p. 152-170, 2022Tradução . . Disponível em: https://doi.org/10.1051/ps/2022002. Acesso em: 02 jan. 2026.
    • APA

      Logachov, A., Mogulskii, A., & Iambartsev, A. (2022). Limit theorems for chains with unbounded variable length memory which satisfy Cramer condition. ESAIM: Probability and Statistics, 26, 152-170. doi:10.1051/ps/2022002
    • NLM

      Logachov A, Mogulskii A, Iambartsev A. Limit theorems for chains with unbounded variable length memory which satisfy Cramer condition [Internet]. ESAIM: Probability and Statistics. 2022 ; 26 152-170.[citado 2026 jan. 02 ] Available from: https://doi.org/10.1051/ps/2022002
    • Vancouver

      Logachov A, Mogulskii A, Iambartsev A. Limit theorems for chains with unbounded variable length memory which satisfy Cramer condition [Internet]. ESAIM: Probability and Statistics. 2022 ; 26 152-170.[citado 2026 jan. 02 ] Available from: https://doi.org/10.1051/ps/2022002
  • Source: Reports on Mathematical Physics. Unidade: IME

    Subjects: PROCESSOS DE MARKOV, GRANDES DESVIOS, BURACOS NEGROS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PECHERSKY, Eugene e PIROGOV, Sergei e YAMBARTSEV, Anatoli. Hawking-Penrose black hole model. Large lmission regime. Reports on Mathematical Physics, v. 87, n. 1, p. 1-14, 2021Tradução . . Disponível em: https://doi.org/10.1016/S0034-4877(21)00007-0. Acesso em: 02 jan. 2026.
    • APA

      Pechersky, E., Pirogov, S., & Yambartsev, A. (2021). Hawking-Penrose black hole model. Large lmission regime. Reports on Mathematical Physics, 87( 1), 1-14. doi:10.1016/S0034-4877(21)00007-0
    • NLM

      Pechersky E, Pirogov S, Yambartsev A. Hawking-Penrose black hole model. Large lmission regime [Internet]. Reports on Mathematical Physics. 2021 ; 87( 1): 1-14.[citado 2026 jan. 02 ] Available from: https://doi.org/10.1016/S0034-4877(21)00007-0
    • Vancouver

      Pechersky E, Pirogov S, Yambartsev A. Hawking-Penrose black hole model. Large lmission regime [Internet]. Reports on Mathematical Physics. 2021 ; 87( 1): 1-14.[citado 2026 jan. 02 ] Available from: https://doi.org/10.1016/S0034-4877(21)00007-0
  • Source: Siberian Electronic Mathematical Reports. Unidade: IME

    Subjects: GRANDES DESVIOS, ESTATÍSTICAS VITAIS (BIOESTATÍSTICA)

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOGACHOV, Artem Vasilhevic et al. A remark on normalizations in a local large deviations principle for inhomogeneous birth-and-death process. Siberian Electronic Mathematical Reports, v. 17, p. 1258-1269, 2020Tradução . . Disponível em: https://doi.org/10.33048/semi.2020.17.092. Acesso em: 02 jan. 2026.
    • APA

      Logachov, A. V., Suhov, Y. M., Vvedenskaya, N. D., & Iambartsev, A. (2020). A remark on normalizations in a local large deviations principle for inhomogeneous birth-and-death process. Siberian Electronic Mathematical Reports, 17, 1258-1269. doi:10.33048/semi.2020.17.092
    • NLM

      Logachov AV, Suhov YM, Vvedenskaya ND, Iambartsev A. A remark on normalizations in a local large deviations principle for inhomogeneous birth-and-death process [Internet]. Siberian Electronic Mathematical Reports. 2020 ; 17 1258-1269.[citado 2026 jan. 02 ] Available from: https://doi.org/10.33048/semi.2020.17.092
    • Vancouver

      Logachov AV, Suhov YM, Vvedenskaya ND, Iambartsev A. A remark on normalizations in a local large deviations principle for inhomogeneous birth-and-death process [Internet]. Siberian Electronic Mathematical Reports. 2020 ; 17 1258-1269.[citado 2026 jan. 02 ] Available from: https://doi.org/10.33048/semi.2020.17.092

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026