Filtros : "positive definiteness" Limpar

Filtros



Refine with date range


  • Source: Surveys in Mathematics and its Applications. Unidade: ICMC

    Subjects: ANÁLISE HARMÔNICA, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENEGATTO, Valdir Antônio. Positive definiteness: from scalar to operator-valued kernels. Surveys in Mathematics and its Applications, v. 16, p. 339-359, 2021Tradução . . Disponível em: https://www.utgjiu.ro/math/sma/v16/a16_19.html. Acesso em: 29 jan. 2026.
    • APA

      Menegatto, V. A. (2021). Positive definiteness: from scalar to operator-valued kernels. Surveys in Mathematics and its Applications, 16, 339-359. Recuperado de https://www.utgjiu.ro/math/sma/v16/a16_19.html
    • NLM

      Menegatto VA. Positive definiteness: from scalar to operator-valued kernels [Internet]. Surveys in Mathematics and its Applications. 2021 ; 16 339-359.[citado 2026 jan. 29 ] Available from: https://www.utgjiu.ro/math/sma/v16/a16_19.html
    • Vancouver

      Menegatto VA. Positive definiteness: from scalar to operator-valued kernels [Internet]. Surveys in Mathematics and its Applications. 2021 ; 16 339-359.[citado 2026 jan. 29 ] Available from: https://www.utgjiu.ro/math/sma/v16/a16_19.html
  • Source: Canadian Mathematical Bulletin. Unidade: ICMC

    Subjects: ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS, GRUPOS ABELIANOS, TRANSFORMADA DE FOURIER

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENEGATTO, Valdir Antônio e OLIVEIRA, Claudemir Pinheiro de. Positive definiteness on products of compact two-point homogeneous spaces and locally compact Abelian groups. Canadian Mathematical Bulletin, v. 63, n. 4, p. 705-715, 2020Tradução . . Disponível em: https://doi.org/10.4153/S0008439519000663. Acesso em: 29 jan. 2026.
    • APA

      Menegatto, V. A., & Oliveira, C. P. de. (2020). Positive definiteness on products of compact two-point homogeneous spaces and locally compact Abelian groups. Canadian Mathematical Bulletin, 63( 4), 705-715. doi:10.4153/S0008439519000663
    • NLM

      Menegatto VA, Oliveira CP de. Positive definiteness on products of compact two-point homogeneous spaces and locally compact Abelian groups [Internet]. Canadian Mathematical Bulletin. 2020 ; 63( 4): 705-715.[citado 2026 jan. 29 ] Available from: https://doi.org/10.4153/S0008439519000663
    • Vancouver

      Menegatto VA, Oliveira CP de. Positive definiteness on products of compact two-point homogeneous spaces and locally compact Abelian groups [Internet]. Canadian Mathematical Bulletin. 2020 ; 63( 4): 705-715.[citado 2026 jan. 29 ] Available from: https://doi.org/10.4153/S0008439519000663
  • Source: Proceedings of the American Mathematical Society. Unidade: ICMC

    Subjects: FUNÇÕES HIPERGEOMÉTRICAS, ANÁLISE HARMÔNICA, SÉRIES DE FOURIER, SÉRIES DE JACOBI

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, J. C e MENEGATTO, Valdir Antônio. A limit formula for semigroups defined by Fourier-Jacobi series. Proceedings of the American Mathematical Society, v. 146, n. 5, p. 2027-2038, 2018Tradução . . Disponível em: https://doi.org/10.1090/proc/13889. Acesso em: 29 jan. 2026.
    • APA

      Guella, J. C., & Menegatto, V. A. (2018). A limit formula for semigroups defined by Fourier-Jacobi series. Proceedings of the American Mathematical Society, 146( 5), 2027-2038. doi:10.1090/proc/13889
    • NLM

      Guella JC, Menegatto VA. A limit formula for semigroups defined by Fourier-Jacobi series [Internet]. Proceedings of the American Mathematical Society. 2018 ; 146( 5): 2027-2038.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1090/proc/13889
    • Vancouver

      Guella JC, Menegatto VA. A limit formula for semigroups defined by Fourier-Jacobi series [Internet]. Proceedings of the American Mathematical Society. 2018 ; 146( 5): 2027-2038.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1090/proc/13889
  • Source: Banach Journal of Mathematical Analysis. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, FUNÇÕES ESPECIAIS, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, J. C e MENEGATTO, Valdir Antônio e PERON, Ana Paula. An extension of a theorem of Schoenberg to products of spheres. Banach Journal of Mathematical Analysis, v. 10, n. 4, p. 671-685, 2016Tradução . . Disponível em: https://doi.org/10.1215/17358787-3649260. Acesso em: 29 jan. 2026.
    • APA

      Guella, J. C., Menegatto, V. A., & Peron, A. P. (2016). An extension of a theorem of Schoenberg to products of spheres. Banach Journal of Mathematical Analysis, 10( 4), 671-685. doi:10.1215/17358787-3649260
    • NLM

      Guella JC, Menegatto VA, Peron AP. An extension of a theorem of Schoenberg to products of spheres [Internet]. Banach Journal of Mathematical Analysis. 2016 ; 10( 4): 671-685.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1215/17358787-3649260
    • Vancouver

      Guella JC, Menegatto VA, Peron AP. An extension of a theorem of Schoenberg to products of spheres [Internet]. Banach Journal of Mathematical Analysis. 2016 ; 10( 4): 671-685.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1215/17358787-3649260
  • Source: Mathematical Inequalities and Applications. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, OPERADORES INTEGRAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JORDÃO, Thaís e MENEGATTO, Valdir Antônio. Jackson kernels: a tool for analysing the decay of eigenvalue sequences of integral operators on the sphere. Mathematical Inequalities and Applications, v. 18, n. 4, p. 1483-1500, 2015Tradução . . Disponível em: https://doi.org/10.7153/mia-18-115. Acesso em: 29 jan. 2026.
    • APA

      Jordão, T., & Menegatto, V. A. (2015). Jackson kernels: a tool for analysing the decay of eigenvalue sequences of integral operators on the sphere. Mathematical Inequalities and Applications, 18( 4), 1483-1500. doi:10.7153/mia-18-115
    • NLM

      Jordão T, Menegatto VA. Jackson kernels: a tool for analysing the decay of eigenvalue sequences of integral operators on the sphere [Internet]. Mathematical Inequalities and Applications. 2015 ; 18( 4): 1483-1500.[citado 2026 jan. 29 ] Available from: https://doi.org/10.7153/mia-18-115
    • Vancouver

      Jordão T, Menegatto VA. Jackson kernels: a tool for analysing the decay of eigenvalue sequences of integral operators on the sphere [Internet]. Mathematical Inequalities and Applications. 2015 ; 18( 4): 1483-1500.[citado 2026 jan. 29 ] Available from: https://doi.org/10.7153/mia-18-115

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026