A limit formula for semigroups defined by Fourier-Jacobi series (2018)
- Authors:
- Autor USP: MENEGATTO, VALDIR ANTONIO - ICMC
- Unidade: ICMC
- DOI: 10.1090/proc/13889
- Subjects: FUNÇÕES HIPERGEOMÉTRICAS; ANÁLISE HARMÔNICA; SÉRIES DE FOURIER; SÉRIES DE JACOBI
- Keywords: Jacobi polynomials; limit formulas; positive definiteness; two-point homogeneous spaces; Fourier-Jacobi expansions
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Providence
- Date published: 2018
- Source:
- Título: Proceedings of the American Mathematical Society
- ISSN: 0002-9939
- Volume/Número/Paginação/Ano: v. 146, n. 5, p. 2027-2038, May 2018
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: bronze
-
ABNT
GUELLA, J. C e MENEGATTO, Valdir Antônio. A limit formula for semigroups defined by Fourier-Jacobi series. Proceedings of the American Mathematical Society, v. 146, n. 5, p. 2027-2038, 2018Tradução . . Disponível em: https://doi.org/10.1090/proc/13889. Acesso em: 04 ago. 2025. -
APA
Guella, J. C., & Menegatto, V. A. (2018). A limit formula for semigroups defined by Fourier-Jacobi series. Proceedings of the American Mathematical Society, 146( 5), 2027-2038. doi:10.1090/proc/13889 -
NLM
Guella JC, Menegatto VA. A limit formula for semigroups defined by Fourier-Jacobi series [Internet]. Proceedings of the American Mathematical Society. 2018 ; 146( 5): 2027-2038.[citado 2025 ago. 04 ] Available from: https://doi.org/10.1090/proc/13889 -
Vancouver
Guella JC, Menegatto VA. A limit formula for semigroups defined by Fourier-Jacobi series [Internet]. Proceedings of the American Mathematical Society. 2018 ; 146( 5): 2027-2038.[citado 2025 ago. 04 ] Available from: https://doi.org/10.1090/proc/13889 - Interpolation using positive definite and conditionally negative definitive kernels
- Strictly positive definite kernels on compact two-point homogeneous spaces
- Annihilating properties of convolution operators on complex spheres
- Approximate solutions of equations defined by spherical multiplier operators
- A necessary and sufficient condition for strictly positive definite functions on spheres
- Strictly positive definite functions on the complex hilbert sphere
- Strictly positive definite kernels on subsets of the complex plane
- Positive definite kernels on complex spheres
- Conditionally positive definite kernels on euclidean domains
- Interpolation on the complex Hilbert sphere using positive definite and conditionally negative definite kernels
Informações sobre o DOI: 10.1090/proc/13889 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas