Filtros : "nonlinear vector autoregressive model" Limpar


  • Source: Transcription factor regulatory networks: methods and protocols. Unidade: IME

    Subjects: BIOINFORMÁTICA, ANÁLISE DE SÉRIES TEMPORAIS, ANÁLISE MULTIVARIADA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUJITA, André e MIYANO, Satoru. A tutorial to identify nonlinear associations in gene expression time series data. Transcription factor regulatory networks: methods and protocols. Tradução . New York: Humana Press, 2014. . Disponível em: https://doi.org/10.1007/978-1-4939-0805-9_8. Acesso em: 22 jan. 2026.
    • APA

      Fujita, A., & Miyano, S. (2014). A tutorial to identify nonlinear associations in gene expression time series data. In Transcription factor regulatory networks: methods and protocols. New York: Humana Press. doi:10.1007/978-1-4939-0805-9_8
    • NLM

      Fujita A, Miyano S. A tutorial to identify nonlinear associations in gene expression time series data [Internet]. In: Transcription factor regulatory networks: methods and protocols. New York: Humana Press; 2014. [citado 2026 jan. 22 ] Available from: https://doi.org/10.1007/978-1-4939-0805-9_8
    • Vancouver

      Fujita A, Miyano S. A tutorial to identify nonlinear associations in gene expression time series data [Internet]. In: Transcription factor regulatory networks: methods and protocols. New York: Humana Press; 2014. [citado 2026 jan. 22 ] Available from: https://doi.org/10.1007/978-1-4939-0805-9_8

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026