A tutorial to identify nonlinear associations in gene expression time series data (2014)
- Authors:
- Autor USP: FUJITA, ANDRÉ - IME
- Unidade: IME
- DOI: 10.1007/978-1-4939-0805-9_8
- Subjects: BIOINFORMÁTICA; ANÁLISE DE SÉRIES TEMPORAIS; ANÁLISE MULTIVARIADA
- Keywords: regulatory network; systems biology; Granger causality; vector autoregressive model; nonlinear vector autoregressive model
- Language: Inglês
- Imprenta:
- Publisher: Humana Press
- Publisher place: New York
- Date published: 2014
- Source:
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
FUJITA, André e MIYANO, Satoru. A tutorial to identify nonlinear associations in gene expression time series data. Transcription factor regulatory networks: methods and protocols. Tradução . New York: Humana Press, 2014. . Disponível em: https://doi.org/10.1007/978-1-4939-0805-9_8. Acesso em: 02 nov. 2024. -
APA
Fujita, A., & Miyano, S. (2014). A tutorial to identify nonlinear associations in gene expression time series data. In Transcription factor regulatory networks: methods and protocols. New York: Humana Press. doi:10.1007/978-1-4939-0805-9_8 -
NLM
Fujita A, Miyano S. A tutorial to identify nonlinear associations in gene expression time series data [Internet]. In: Transcription factor regulatory networks: methods and protocols. New York: Humana Press; 2014. [citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/978-1-4939-0805-9_8 -
Vancouver
Fujita A, Miyano S. A tutorial to identify nonlinear associations in gene expression time series data [Internet]. In: Transcription factor regulatory networks: methods and protocols. New York: Humana Press; 2014. [citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/978-1-4939-0805-9_8 - Análise de dados de expressão gênica: normalização de microarrays e modelagem de redes regulatórias
- Identifying regulational alterations in gene regulatory networks by state space representation of vector autoregressive models and variational annealing
- Potential confounders in the analysis of Brazilian adolescent’s health: a combination of machine learning and graph theory
- Systems biology model repository for macrophage pathway simulation
- Computational statistics in biological big data: methods and applications
- Efficient eigenvalue counts for tree-like networks
- Dynamical properties for a tunable circular to polygonal billiard
- Granger causality among graphs and application to functional brain connectivity in autism spectrum disorder
- Conservative generalized bifurcation diagrams and phase space properties for oval-like billiards
- Elevated β-catenin pathway as a novel target for patients with resistance to EGF receptor targeting drugs
Informações sobre o DOI: 10.1007/978-1-4939-0805-9_8 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas