Filtros : "invariant hyperbola" Limpar

Filtros



Refine with date range


  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, INVARIANTES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability. Electronic Journal of Qualitative Theory of Differential Equations, v. 2021, n. 45, p. 1-90, 2021Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2021.1.45. Acesso em: 09 fev. 2026.
    • APA

      Oliveira, R. D. dos S., Schlomiuk, D., Travaglini, A. M., & Valls, C. (2021). Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability. Electronic Journal of Qualitative Theory of Differential Equations, 2021( 45), 1-90. doi:10.14232/ejqtde.2021.1.45
    • NLM

      Oliveira RD dos S, Schlomiuk D, Travaglini AM, Valls C. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 45): 1-90.[citado 2026 fev. 09 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.45
    • Vancouver

      Oliveira RD dos S, Schlomiuk D, Travaglini AM, Valls C. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 45): 1-90.[citado 2026 fev. 09 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.45
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e SCHLOMIUK, Dana e TRAVAGLINI, Ana Maria. Geometry and integrability of quadratic systems with invariant hyperbolas. Electronic Journal of Qualitative Theory of Differential Equations, v. 2021, n. 6, p. 1-56, 2021Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2021.1.6. Acesso em: 09 fev. 2026.
    • APA

      Oliveira, R. D. dos S., Schlomiuk, D., & Travaglini, A. M. (2021). Geometry and integrability of quadratic systems with invariant hyperbolas. Electronic Journal of Qualitative Theory of Differential Equations, 2021( 6), 1-56. doi:10.14232/ejqtde.2021.1.6
    • NLM

      Oliveira RD dos S, Schlomiuk D, Travaglini AM. Geometry and integrability of quadratic systems with invariant hyperbolas [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 6): 1-56.[citado 2026 fev. 09 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.6
    • Vancouver

      Oliveira RD dos S, Schlomiuk D, Travaglini AM. Geometry and integrability of quadratic systems with invariant hyperbolas [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 6): 1-56.[citado 2026 fev. 09 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.6
  • Source: Electronic Journal of Differential Equations. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e REZENDE, Alex C e VULPE, Nicolae. Family of quadratic differential systems with invariant hyperbolas: a complete classification in the space 'R POT. 12'. Electronic Journal of Differential Equations, v. 2016, n. 162, p. 1-50, 2016Tradução . . Disponível em: http://ejde.math.txstate.edu/. Acesso em: 09 fev. 2026.
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., & Vulpe, N. (2016). Family of quadratic differential systems with invariant hyperbolas: a complete classification in the space 'R POT. 12'. Electronic Journal of Differential Equations, 2016( 162), 1-50. Recuperado de http://ejde.math.txstate.edu/
    • NLM

      Oliveira RD dos S, Rezende AC, Vulpe N. Family of quadratic differential systems with invariant hyperbolas: a complete classification in the space 'R POT. 12' [Internet]. Electronic Journal of Differential Equations. 2016 ; 2016( 162): 1-50.[citado 2026 fev. 09 ] Available from: http://ejde.math.txstate.edu/
    • Vancouver

      Oliveira RD dos S, Rezende AC, Vulpe N. Family of quadratic differential systems with invariant hyperbolas: a complete classification in the space 'R POT. 12' [Internet]. Electronic Journal of Differential Equations. 2016 ; 2016( 162): 1-50.[citado 2026 fev. 09 ] Available from: http://ejde.math.txstate.edu/

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026