Filtros : "covariance functions" Limpar

Filtros



Refine with date range


  • Source: Biometrics. Unidade: ICMC

    Subjects: PROCESSOS GAUSSIANOS, ESTATÍSTICA APLICADA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ACOSTA, Jonathan et al. Comparing two spatial variables with the probability of agreement. Biometrics, v. 80, n. 1, p. 1-14, 2024Tradução . . Disponível em: https://doi.org/10.1093/biomtc/ujae009. Acesso em: 15 fev. 2026.
    • APA

      Acosta, J., Vallejos, R., Ellison, A. M., Osorio, F., & Castro, M. de. (2024). Comparing two spatial variables with the probability of agreement. Biometrics, 80( 1), 1-14. doi:10.1093/biomtc/ujae009
    • NLM

      Acosta J, Vallejos R, Ellison AM, Osorio F, Castro M de. Comparing two spatial variables with the probability of agreement [Internet]. Biometrics. 2024 ; 80( 1): 1-14.[citado 2026 fev. 15 ] Available from: https://doi.org/10.1093/biomtc/ujae009
    • Vancouver

      Acosta J, Vallejos R, Ellison AM, Osorio F, Castro M de. Comparing two spatial variables with the probability of agreement [Internet]. Biometrics. 2024 ; 80( 1): 1-14.[citado 2026 fev. 15 ] Available from: https://doi.org/10.1093/biomtc/ujae009
  • Source: Integral Transforms and Special Functions. Unidade: ICMC

    Subjects: FUNÇÕES HIPERGEOMÉTRICAS, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, Jean Carlo e MENEGATTO, Valdir Antônio. Positive definite matrix functions on spheres defined by hypergeometric functions. Integral Transforms and Special Functions, v. 30, n. 10, p. 774-789, 2019Tradução . . Disponível em: https://doi.org/10.1080/10652469.2019.1619177. Acesso em: 15 fev. 2026.
    • APA

      Guella, J. C., & Menegatto, V. A. (2019). Positive definite matrix functions on spheres defined by hypergeometric functions. Integral Transforms and Special Functions, 30( 10), 774-789. doi:10.1080/10652469.2019.1619177
    • NLM

      Guella JC, Menegatto VA. Positive definite matrix functions on spheres defined by hypergeometric functions [Internet]. Integral Transforms and Special Functions. 2019 ; 30( 10): 774-789.[citado 2026 fev. 15 ] Available from: https://doi.org/10.1080/10652469.2019.1619177
    • Vancouver

      Guella JC, Menegatto VA. Positive definite matrix functions on spheres defined by hypergeometric functions [Internet]. Integral Transforms and Special Functions. 2019 ; 30( 10): 774-789.[citado 2026 fev. 15 ] Available from: https://doi.org/10.1080/10652469.2019.1619177
  • Source: Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, FUNÇÕES ESPECIAIS, ANÁLISE HARMÔNICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, Jean C e MENEGATTO, Valdir Antônio e PERON, Ana Paula. Strictly positive definite kernels on a product of spheres II. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, v. 12, n. 103, p. 1-15, 2016Tradução . . Disponível em: https://doi.org/10.3842/SIGMA.2016.103. Acesso em: 15 fev. 2026.
    • APA

      Guella, J. C., Menegatto, V. A., & Peron, A. P. (2016). Strictly positive definite kernels on a product of spheres II. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, 12( 103), 1-15. doi:10.3842/SIGMA.2016.103
    • NLM

      Guella JC, Menegatto VA, Peron AP. Strictly positive definite kernels on a product of spheres II [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2016 ; 12( 103): 1-15.[citado 2026 fev. 15 ] Available from: https://doi.org/10.3842/SIGMA.2016.103
    • Vancouver

      Guella JC, Menegatto VA, Peron AP. Strictly positive definite kernels on a product of spheres II [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2016 ; 12( 103): 1-15.[citado 2026 fev. 15 ] Available from: https://doi.org/10.3842/SIGMA.2016.103

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026