Filtros : "bifurcation" Limpar

Filtros



Refine with date range


  • Source: Nonlinearity. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      QUOIRIN, Humberto Ramos e SICILIANO, Gaetano e SILVA, Kaye. Critical points with prescribed energy for a class of functionals depending on a parameter: existence, multiplicity and bifurcation results. Nonlinearity, v. 37, n. artigo 065010, p. 1-41, 2024Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ad39dd. Acesso em: 27 jan. 2026.
    • APA

      Quoirin, H. R., Siciliano, G., & Silva, K. (2024). Critical points with prescribed energy for a class of functionals depending on a parameter: existence, multiplicity and bifurcation results. Nonlinearity, 37( artigo 065010), 1-41. doi:10.1088/1361-6544/ad39dd
    • NLM

      Quoirin HR, Siciliano G, Silva K. Critical points with prescribed energy for a class of functionals depending on a parameter: existence, multiplicity and bifurcation results [Internet]. Nonlinearity. 2024 ; 37( artigo 065010): 1-41.[citado 2026 jan. 27 ] Available from: https://doi.org/10.1088/1361-6544/ad39dd
    • Vancouver

      Quoirin HR, Siciliano G, Silva K. Critical points with prescribed energy for a class of functionals depending on a parameter: existence, multiplicity and bifurcation results [Internet]. Nonlinearity. 2024 ; 37( artigo 065010): 1-41.[citado 2026 jan. 27 ] Available from: https://doi.org/10.1088/1361-6544/ad39dd
  • Source: Mathematics. Unidade: IME

    Subjects: TEORIA ESPECTRAL, OPERADORES LINEARES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. Global persistence of the unit eigenvectors of perturbed eigenvalue problems in Hilbert spaces: the odd multiplicity case. Mathematics, v. 9, n. art. 561, p. 1-18, 2021Tradução . . Disponível em: https://doi.org/10.3390/math9050561. Acesso em: 27 jan. 2026.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2021). Global persistence of the unit eigenvectors of perturbed eigenvalue problems in Hilbert spaces: the odd multiplicity case. Mathematics, 9( art. 561), 1-18. doi:10.3390/math9050561
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. Global persistence of the unit eigenvectors of perturbed eigenvalue problems in Hilbert spaces: the odd multiplicity case [Internet]. Mathematics. 2021 ; 9( art. 561): 1-18.[citado 2026 jan. 27 ] Available from: https://doi.org/10.3390/math9050561
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. Global persistence of the unit eigenvectors of perturbed eigenvalue problems in Hilbert spaces: the odd multiplicity case [Internet]. Mathematics. 2021 ; 9( art. 561): 1-18.[citado 2026 jan. 27 ] Available from: https://doi.org/10.3390/math9050561
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LI, Yanan et al. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation. Communications on Pure and Applied Analysis, v. No 2020, n. 11, p. 5181-5196, 2020Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2020232. Acesso em: 27 jan. 2026.
    • APA

      Li, Y., Carvalho, A. N. de, Luna, T. L. M., & Moreira, E. M. (2020). A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation. Communications on Pure and Applied Analysis, No 2020( 11), 5181-5196. doi:10.3934/cpaa.2020232
    • NLM

      Li Y, Carvalho AN de, Luna TLM, Moreira EM. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation [Internet]. Communications on Pure and Applied Analysis. 2020 ; No 2020( 11): 5181-5196.[citado 2026 jan. 27 ] Available from: https://doi.org/10.3934/cpaa.2020232
    • Vancouver

      Li Y, Carvalho AN de, Luna TLM, Moreira EM. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation [Internet]. Communications on Pure and Applied Analysis. 2020 ; No 2020( 11): 5181-5196.[citado 2026 jan. 27 ] Available from: https://doi.org/10.3934/cpaa.2020232
  • Source: Annales de l’institut Fourier. Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL CONFORME, GEOMETRIA RIEMANNIANA, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, TEORIA DA BIFURCAÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BETTIOL, Renato Ghini e PICCIONE, Paolo. Infinitely many solutions to the Yamabe problem on noncompact manifolds. Annales de l’institut Fourier, v. 68, n. 2, p. 589-609, 2018Tradução . . Disponível em: https://doi.org/10.5802/aif.3172. Acesso em: 27 jan. 2026.
    • APA

      Bettiol, R. G., & Piccione, P. (2018). Infinitely many solutions to the Yamabe problem on noncompact manifolds. Annales de l’institut Fourier, 68( 2), 589-609. doi:10.5802/aif.3172
    • NLM

      Bettiol RG, Piccione P. Infinitely many solutions to the Yamabe problem on noncompact manifolds [Internet]. Annales de l’institut Fourier. 2018 ; 68( 2): 589-609.[citado 2026 jan. 27 ] Available from: https://doi.org/10.5802/aif.3172
    • Vancouver

      Bettiol RG, Piccione P. Infinitely many solutions to the Yamabe problem on noncompact manifolds [Internet]. Annales de l’institut Fourier. 2018 ; 68( 2): 589-609.[citado 2026 jan. 27 ] Available from: https://doi.org/10.5802/aif.3172
  • Source: Journal of the Mathematical Society of Japan. Unidade: IME

    Subjects: PROBLEMAS VARIACIONAIS, SUPERFÍCIES MÍNIMAS, ANÁLISE GLOBAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOISO, Miyuki e PALMER, Bennett e PICCIONE, Paolo. Stability and bifurcation for surfaces with constant mean curvature. Journal of the Mathematical Society of Japan, v. 69, n. 4, p. 1519-1554, 2017Tradução . . Disponível em: https://doi.org/10.2969/jmsj/06941519. Acesso em: 27 jan. 2026.
    • APA

      Koiso, M., Palmer, B., & Piccione, P. (2017). Stability and bifurcation for surfaces with constant mean curvature. Journal of the Mathematical Society of Japan, 69( 4), 1519-1554. doi:10.2969/jmsj/06941519
    • NLM

      Koiso M, Palmer B, Piccione P. Stability and bifurcation for surfaces with constant mean curvature [Internet]. Journal of the Mathematical Society of Japan. 2017 ; 69( 4): 1519-1554.[citado 2026 jan. 27 ] Available from: https://doi.org/10.2969/jmsj/06941519
    • Vancouver

      Koiso M, Palmer B, Piccione P. Stability and bifurcation for surfaces with constant mean curvature [Internet]. Journal of the Mathematical Society of Japan. 2017 ; 69( 4): 1519-1554.[citado 2026 jan. 27 ] Available from: https://doi.org/10.2969/jmsj/06941519
  • Source: Electronic Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS, SOLUÇÕES PERIÓDICAS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FRASSON, Miguel Vinicius Santini et al. Oscillations with one degree of freedon and discontinuous energy. Electronic Journal of Differential Equations, v. 2015, n. 275, p. 1-10, 2015Tradução . . Disponível em: http://ejde.math.txstate.edu/. Acesso em: 27 jan. 2026.
    • APA

      Frasson, M. V. S., Gadotti, M. C., Nicola, S. H. J., & Taboas, P. Z. (2015). Oscillations with one degree of freedon and discontinuous energy. Electronic Journal of Differential Equations, 2015( 275), 1-10. Recuperado de http://ejde.math.txstate.edu/
    • NLM

      Frasson MVS, Gadotti MC, Nicola SHJ, Taboas PZ. Oscillations with one degree of freedon and discontinuous energy [Internet]. Electronic Journal of Differential Equations. 2015 ; 2015( 275): 1-10.[citado 2026 jan. 27 ] Available from: http://ejde.math.txstate.edu/
    • Vancouver

      Frasson MVS, Gadotti MC, Nicola SHJ, Taboas PZ. Oscillations with one degree of freedon and discontinuous energy [Internet]. Electronic Journal of Differential Equations. 2015 ; 2015( 275): 1-10.[citado 2026 jan. 27 ] Available from: http://ejde.math.txstate.edu/
  • Source: Applicable Analysis. Unidade: IME

    Subjects: TEORIA DA BIFURCAÇÃO, PROPRIEDADES DA SOLUÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Luiz Augusto Fernandes e JÚNIOT, Anizio Perissinotto. Bifurcation of equilibrai for one–dimensional semilinear equation of the thermoelasticity. Applicable Analysis, v. 54, n. 3-4, p. 225-236, 1994Tradução . . Disponível em: https://doi.org/10.1080/00036819408840279. Acesso em: 27 jan. 2026.
    • APA

      Oliveira, L. A. F., & Júniot, A. P. (1994). Bifurcation of equilibrai for one–dimensional semilinear equation of the thermoelasticity. Applicable Analysis, 54( 3-4), 225-236. doi:10.1080/00036819408840279
    • NLM

      Oliveira LAF, Júniot AP. Bifurcation of equilibrai for one–dimensional semilinear equation of the thermoelasticity [Internet]. Applicable Analysis. 1994 ; 54( 3-4): 225-236.[citado 2026 jan. 27 ] Available from: https://doi.org/10.1080/00036819408840279
    • Vancouver

      Oliveira LAF, Júniot AP. Bifurcation of equilibrai for one–dimensional semilinear equation of the thermoelasticity [Internet]. Applicable Analysis. 1994 ; 54( 3-4): 225-236.[citado 2026 jan. 27 ] Available from: https://doi.org/10.1080/00036819408840279

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026