Filtros : "Univariate analysis" Limpar

Filtros



Refine with date range


  • Source: Information Sciences. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, ANÁLISE DE SÉRIES TEMPORAIS, MINERAÇÃO DE DADOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PARMEZAN, Antonio Rafael Sabino e SOUZA, Vinícius M. A e BATISTA, Gustavo Enrique de Almeida Prado Alves. Evaluation of statistical and machine learning models for time series prediction: identifying the state-of-the-art and the best conditions for the use of each model. Information Sciences, v. 484, p. 302-337, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.ins.2019.01.076. Acesso em: 04 jan. 2026.
    • APA

      Parmezan, A. R. S., Souza, V. M. A., & Batista, G. E. de A. P. A. (2019). Evaluation of statistical and machine learning models for time series prediction: identifying the state-of-the-art and the best conditions for the use of each model. Information Sciences, 484, 302-337. doi:10.1016/j.ins.2019.01.076
    • NLM

      Parmezan ARS, Souza VMA, Batista GE de APA. Evaluation of statistical and machine learning models for time series prediction: identifying the state-of-the-art and the best conditions for the use of each model [Internet]. Information Sciences. 2019 ; 484 302-337.[citado 2026 jan. 04 ] Available from: https://doi.org/10.1016/j.ins.2019.01.076
    • Vancouver

      Parmezan ARS, Souza VMA, Batista GE de APA. Evaluation of statistical and machine learning models for time series prediction: identifying the state-of-the-art and the best conditions for the use of each model [Internet]. Information Sciences. 2019 ; 484 302-337.[citado 2026 jan. 04 ] Available from: https://doi.org/10.1016/j.ins.2019.01.076

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026