Filtros : "Tableaux realization" Limpar

Filtros



Refine with date range


  • Unidade: IME

    Assunto: ÁLGEBRA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNÁNDEZ MORALES, Oscar Armando. Representações de Gelfand-Tsetlin de álgebras de Vertex. 2021. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2021. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-07062021-120902/. Acesso em: 26 jan. 2026.
    • APA

      Hernández Morales, O. A. (2021). Representações de Gelfand-Tsetlin de álgebras de Vertex (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-07062021-120902/
    • NLM

      Hernández Morales OA. Representações de Gelfand-Tsetlin de álgebras de Vertex [Internet]. 2021 ;[citado 2026 jan. 26 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-07062021-120902/
    • Vancouver

      Hernández Morales OA. Representações de Gelfand-Tsetlin de álgebras de Vertex [Internet]. 2021 ;[citado 2026 jan. 26 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-07062021-120902/
  • Source: Advances in Mathematics. Unidade: IME

    Subjects: TEORIA ALGÉBRICA DE SISTEMAS, ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e RAMÍREZ, Luis Enrique e ZHANG, Jian. Combinatorial construction of Gelfand–Tsetlin modules for gln. Advances in Mathematics, v. 343, p. 681-711, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.aim.2018.11.027. Acesso em: 26 jan. 2026.
    • APA

      Futorny, V., Ramírez, L. E., & Zhang, J. (2019). Combinatorial construction of Gelfand–Tsetlin modules for gln. Advances in Mathematics, 343, 681-711. doi:10.1016/j.aim.2018.11.027
    • NLM

      Futorny V, Ramírez LE, Zhang J. Combinatorial construction of Gelfand–Tsetlin modules for gln [Internet]. Advances in Mathematics. 2019 ; 343 681-711.[citado 2026 jan. 26 ] Available from: https://doi.org/10.1016/j.aim.2018.11.027
    • Vancouver

      Futorny V, Ramírez LE, Zhang J. Combinatorial construction of Gelfand–Tsetlin modules for gln [Internet]. Advances in Mathematics. 2019 ; 343 681-711.[citado 2026 jan. 26 ] Available from: https://doi.org/10.1016/j.aim.2018.11.027
  • Source: Journal of Algebra. Unidade: IME

    Subjects: GRUPOS QUÂNTICOS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e RAMÍREZ, Luis Enrique e ZHANG, Jian. Gelfand–Tsetlin modules of quantum gln defined by admissible sets of relations. Journal of Algebra, v. 499, p. 375-396, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2017.12.006. Acesso em: 26 jan. 2026.
    • APA

      Futorny, V., Ramírez, L. E., & Zhang, J. (2018). Gelfand–Tsetlin modules of quantum gln defined by admissible sets of relations. Journal of Algebra, 499, 375-396. doi:10.1016/j.jalgebra.2017.12.006
    • NLM

      Futorny V, Ramírez LE, Zhang J. Gelfand–Tsetlin modules of quantum gln defined by admissible sets of relations [Internet]. Journal of Algebra. 2018 ; 499 375-396.[citado 2026 jan. 26 ] Available from: https://doi.org/10.1016/j.jalgebra.2017.12.006
    • Vancouver

      Futorny V, Ramírez LE, Zhang J. Gelfand–Tsetlin modules of quantum gln defined by admissible sets of relations [Internet]. Journal of Algebra. 2018 ; 499 375-396.[citado 2026 jan. 26 ] Available from: https://doi.org/10.1016/j.jalgebra.2017.12.006

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026