Filtros : "Positive definite" Limpar

Filtros



Refine with date range


  • Source: Methods and Applications of Analysis. Unidade: ICMC

    Subjects: ANÁLISE REAL, ANÁLISE HARMÔNICA, ANÁLISE DE VARIÂNCIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENEGATTO, Valdir Antônio e OLIVEIRA, Claudemir Pinheiro de. An extension of Aitken's integral for Gaussians and positive definiteness. Methods and Applications of Analysis, v. 29, n. 2, p. 179-194, 2022Tradução . . Disponível em: https://doi.org/10.4310/MAA.2022.v29.n2.a2. Acesso em: 27 jan. 2026.
    • APA

      Menegatto, V. A., & Oliveira, C. P. de. (2022). An extension of Aitken's integral for Gaussians and positive definiteness. Methods and Applications of Analysis, 29( 2), 179-194. doi:10.4310/MAA.2022.v29.n2.a2
    • NLM

      Menegatto VA, Oliveira CP de. An extension of Aitken's integral for Gaussians and positive definiteness [Internet]. Methods and Applications of Analysis. 2022 ; 29( 2): 179-194.[citado 2026 jan. 27 ] Available from: https://doi.org/10.4310/MAA.2022.v29.n2.a2
    • Vancouver

      Menegatto VA, Oliveira CP de. An extension of Aitken's integral for Gaussians and positive definiteness [Internet]. Methods and Applications of Analysis. 2022 ; 29( 2): 179-194.[citado 2026 jan. 27 ] Available from: https://doi.org/10.4310/MAA.2022.v29.n2.a2
  • Source: Positivity. Unidade: ICMC

    Subjects: ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS, SÉRIES DE FOURIER, POLINÔMIOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, J. C e MENEGATTO, Valdir Antônio. Unitarily invariant strictly positive definite kernels on spheres. Positivity, v. 22, n. 1, p. 91-103, 2018Tradução . . Disponível em: https://doi.org/10.1007/s11117-017-0502-0. Acesso em: 27 jan. 2026.
    • APA

      Guella, J. C., & Menegatto, V. A. (2018). Unitarily invariant strictly positive definite kernels on spheres. Positivity, 22( 1), 91-103. doi:10.1007/s11117-017-0502-0
    • NLM

      Guella JC, Menegatto VA. Unitarily invariant strictly positive definite kernels on spheres [Internet]. Positivity. 2018 ; 22( 1): 91-103.[citado 2026 jan. 27 ] Available from: https://doi.org/10.1007/s11117-017-0502-0
    • Vancouver

      Guella JC, Menegatto VA. Unitarily invariant strictly positive definite kernels on spheres [Internet]. Positivity. 2018 ; 22( 1): 91-103.[citado 2026 jan. 27 ] Available from: https://doi.org/10.1007/s11117-017-0502-0
  • Source: Positivity. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS, FUNÇÕES ESPECIAIS, INTERPOLAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, J. C e MENEGATTO, Valdir Antônio e PERON, Ana Paula. Strictly positive definite kernels on a product of circles. Positivity, v. 21, n. 1, p. 329-342, 2017Tradução . . Disponível em: https://doi.org/10.1007/s11117-016-0425-1. Acesso em: 27 jan. 2026.
    • APA

      Guella, J. C., Menegatto, V. A., & Peron, A. P. (2017). Strictly positive definite kernels on a product of circles. Positivity, 21( 1), 329-342. doi:10.1007/s11117-016-0425-1
    • NLM

      Guella JC, Menegatto VA, Peron AP. Strictly positive definite kernels on a product of circles [Internet]. Positivity. 2017 ; 21( 1): 329-342.[citado 2026 jan. 27 ] Available from: https://doi.org/10.1007/s11117-016-0425-1
    • Vancouver

      Guella JC, Menegatto VA, Peron AP. Strictly positive definite kernels on a product of circles [Internet]. Positivity. 2017 ; 21( 1): 329-342.[citado 2026 jan. 27 ] Available from: https://doi.org/10.1007/s11117-016-0425-1

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026