Filtros : "Poincaré compactification" Limpar

Filtros



Refine with date range


  • Source: Electronic Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS NÃO LINEARES, ESTABILIDADE DE SISTEMAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DIAS, Fábio Scalco e OLIVEIRA, Regilene Delazari dos Santos e VALLS, Claudia. Dynamics of a May-Leonard asymmetric system of ordinary differential equations. Electronic Journal of Differential Equations, v. 2025, n. 115, p. 1-18, 2025Tradução . . Disponível em: https://doi.org/10.58997/ejde.2025.115. Acesso em: 13 fev. 2026.
    • APA

      Dias, F. S., Oliveira, R. D. dos S., & Valls, C. (2025). Dynamics of a May-Leonard asymmetric system of ordinary differential equations. Electronic Journal of Differential Equations, 2025( 115), 1-18. doi:10.58997/ejde.2025.115
    • NLM

      Dias FS, Oliveira RD dos S, Valls C. Dynamics of a May-Leonard asymmetric system of ordinary differential equations [Internet]. Electronic Journal of Differential Equations. 2025 ; 2025( 115): 1-18.[citado 2026 fev. 13 ] Available from: https://doi.org/10.58997/ejde.2025.115
    • Vancouver

      Dias FS, Oliveira RD dos S, Valls C. Dynamics of a May-Leonard asymmetric system of ordinary differential equations [Internet]. Electronic Journal of Differential Equations. 2025 ; 2025( 115): 1-18.[citado 2026 fev. 13 ] Available from: https://doi.org/10.58997/ejde.2025.115
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: ICMC

    Assunto: TEORIA QUALITATIVA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREZ, Otavio Henrique e SILVA, Paulo Ricardo da. Polynomial slow-fast systems on the Poincaré-Lyapunov sphere. São Paulo Journal of Mathematical Sciences, v. 18, n. 2, p. 1527-1552, 2024Tradução . . Disponível em: https://doi.org/10.1007/s40863-024-00441-8. Acesso em: 13 fev. 2026.
    • APA

      Perez, O. H., & Silva, P. R. da. (2024). Polynomial slow-fast systems on the Poincaré-Lyapunov sphere. São Paulo Journal of Mathematical Sciences, 18( 2), 1527-1552. doi:10.1007/s40863-024-00441-8
    • NLM

      Perez OH, Silva PR da. Polynomial slow-fast systems on the Poincaré-Lyapunov sphere [Internet]. São Paulo Journal of Mathematical Sciences. 2024 ; 18( 2): 1527-1552.[citado 2026 fev. 13 ] Available from: https://doi.org/10.1007/s40863-024-00441-8
    • Vancouver

      Perez OH, Silva PR da. Polynomial slow-fast systems on the Poincaré-Lyapunov sphere [Internet]. São Paulo Journal of Mathematical Sciences. 2024 ; 18( 2): 1527-1552.[citado 2026 fev. 13 ] Available from: https://doi.org/10.1007/s40863-024-00441-8
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, GEOMETRIA ALGÉBRICA REAL

    Disponível em 2026-12-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DALBELO, Thaís Maria e OLIVEIRA, Regilene Delazari dos Santos e PEREZ, Otavio Henrique. Topological equivalence at infinity of a planar vector field and its principal part defined through Newton polytope. Journal of Differential Equations, v. No 2024, p. 230-253, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.06.028. Acesso em: 13 fev. 2026.
    • APA

      Dalbelo, T. M., Oliveira, R. D. dos S., & Perez, O. H. (2024). Topological equivalence at infinity of a planar vector field and its principal part defined through Newton polytope. Journal of Differential Equations, No 2024, 230-253. doi:10.1016/j.jde.2024.06.028
    • NLM

      Dalbelo TM, Oliveira RD dos S, Perez OH. Topological equivalence at infinity of a planar vector field and its principal part defined through Newton polytope [Internet]. Journal of Differential Equations. 2024 ; No 2024 230-253.[citado 2026 fev. 13 ] Available from: https://doi.org/10.1016/j.jde.2024.06.028
    • Vancouver

      Dalbelo TM, Oliveira RD dos S, Perez OH. Topological equivalence at infinity of a planar vector field and its principal part defined through Newton polytope [Internet]. Journal of Differential Equations. 2024 ; No 2024 230-253.[citado 2026 fev. 13 ] Available from: https://doi.org/10.1016/j.jde.2024.06.028
  • Source: Differential Equations and Dynamical Systems. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BALDISSERA, Maíra Duran e LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos. Dynamics of a generalized rayleigh system. Differential Equations and Dynamical Systems, v. 32, n. 3, p. 933-941, 2024Tradução . . Disponível em: https://doi.org/10.1007/s12591-022-00604-z. Acesso em: 13 fev. 2026.
    • APA

      Baldissera, M. D., Llibre, J., & Oliveira, R. D. dos S. (2024). Dynamics of a generalized rayleigh system. Differential Equations and Dynamical Systems, 32( 3), 933-941. doi:10.1007/s12591-022-00604-z
    • NLM

      Baldissera MD, Llibre J, Oliveira RD dos S. Dynamics of a generalized rayleigh system [Internet]. Differential Equations and Dynamical Systems. 2024 ; 32( 3): 933-941.[citado 2026 fev. 13 ] Available from: https://doi.org/10.1007/s12591-022-00604-z
    • Vancouver

      Baldissera MD, Llibre J, Oliveira RD dos S. Dynamics of a generalized rayleigh system [Internet]. Differential Equations and Dynamical Systems. 2024 ; 32( 3): 933-941.[citado 2026 fev. 13 ] Available from: https://doi.org/10.1007/s12591-022-00604-z
  • Source: Mathematical Methods in the Applied Sciences. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SOLUÇÕES PERIÓDICAS, SISTEMAS DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos. On the limit cycle of a Belousov-Zhabotinsky differential systems. Mathematical Methods in the Applied Sciences, v. 45, n. Ja 2022, p. 579-584, 2022Tradução . . Disponível em: https://doi.org/10.1002/mma.7798. Acesso em: 13 fev. 2026.
    • APA

      Llibre, J., & Oliveira, R. D. dos S. (2022). On the limit cycle of a Belousov-Zhabotinsky differential systems. Mathematical Methods in the Applied Sciences, 45( Ja 2022), 579-584. doi:10.1002/mma.7798
    • NLM

      Llibre J, Oliveira RD dos S. On the limit cycle of a Belousov-Zhabotinsky differential systems [Internet]. Mathematical Methods in the Applied Sciences. 2022 ; 45( Ja 2022): 579-584.[citado 2026 fev. 13 ] Available from: https://doi.org/10.1002/mma.7798
    • Vancouver

      Llibre J, Oliveira RD dos S. On the limit cycle of a Belousov-Zhabotinsky differential systems [Internet]. Mathematical Methods in the Applied Sciences. 2022 ; 45( Ja 2022): 579-584.[citado 2026 fev. 13 ] Available from: https://doi.org/10.1002/mma.7798
  • Source: Discrete and Continuous Dynamical Systems : Series B. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, INVARIANTES, ATRATORES, CAOS (SISTEMAS DINÂMICOS)

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOTA, Marcos Coutinho e OLIVEIRA, Regilene Delazari dos Santos. Dynamic aspects of sprott BC chaotic system. Discrete and Continuous Dynamical Systems : Series B, v. 26, n. 3, p. 1653-1673, 2021Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2020177. Acesso em: 13 fev. 2026.
    • APA

      Mota, M. C., & Oliveira, R. D. dos S. (2021). Dynamic aspects of sprott BC chaotic system. Discrete and Continuous Dynamical Systems : Series B, 26( 3), 1653-1673. doi:10.3934/dcdsb.2020177
    • NLM

      Mota MC, Oliveira RD dos S. Dynamic aspects of sprott BC chaotic system [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2021 ; 26( 3): 1653-1673.[citado 2026 fev. 13 ] Available from: https://doi.org/10.3934/dcdsb.2020177
    • Vancouver

      Mota MC, Oliveira RD dos S. Dynamic aspects of sprott BC chaotic system [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2021 ; 26( 3): 1653-1673.[citado 2026 fev. 13 ] Available from: https://doi.org/10.3934/dcdsb.2020177
  • Unidade: ICMC

    Subjects: CURVAS ALGÉBRICAS, SISTEMAS DIFERENCIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BALDISSERA, Maíra Duran. Integrabilidade em sistemas planares e existência de ciclos limites para o sistema de Rayleigh generalizado. 2020. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2020. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-09112020-185555/. Acesso em: 13 fev. 2026.
    • APA

      Baldissera, M. D. (2020). Integrabilidade em sistemas planares e existência de ciclos limites para o sistema de Rayleigh generalizado (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-09112020-185555/
    • NLM

      Baldissera MD. Integrabilidade em sistemas planares e existência de ciclos limites para o sistema de Rayleigh generalizado [Internet]. 2020 ;[citado 2026 fev. 13 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-09112020-185555/
    • Vancouver

      Baldissera MD. Integrabilidade em sistemas planares e existência de ciclos limites para o sistema de Rayleigh generalizado [Internet]. 2020 ;[citado 2026 fev. 13 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-09112020-185555/
  • Source: Electronic Journal of Differential Equations. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, INVARIANTES

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e VALLS, Claudia. Global dynamics of the May-Leonard system with a Darboux invariant. Electronic Journal of Differential Equations, v. 2020, n. 55, p. 1-19, 2020Tradução . . Disponível em: https://ejde.math.txstate.edu/Volumes/2020/55/oliveira.pdf. Acesso em: 13 fev. 2026.
    • APA

      Oliveira, R. D. dos S., & Valls, C. (2020). Global dynamics of the May-Leonard system with a Darboux invariant. Electronic Journal of Differential Equations, 2020( 55), 1-19. Recuperado de https://ejde.math.txstate.edu/Volumes/2020/55/oliveira.pdf
    • NLM

      Oliveira RD dos S, Valls C. Global dynamics of the May-Leonard system with a Darboux invariant [Internet]. Electronic Journal of Differential Equations. 2020 ; 2020( 55): 1-19.[citado 2026 fev. 13 ] Available from: https://ejde.math.txstate.edu/Volumes/2020/55/oliveira.pdf
    • Vancouver

      Oliveira RD dos S, Valls C. Global dynamics of the May-Leonard system with a Darboux invariant [Internet]. Electronic Journal of Differential Equations. 2020 ; 2020( 55): 1-19.[citado 2026 fev. 13 ] Available from: https://ejde.math.txstate.edu/Volumes/2020/55/oliveira.pdf
  • Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SISTEMAS DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos. On the limit cycle of a Belousov-Zabotinsky differential systems. . São Carlos: ICMC-USP. Disponível em: http://repositorio.icmc.usp.br//handle/RIICMC/6874. Acesso em: 13 fev. 2026. , 2019
    • APA

      Llibre, J., & Oliveira, R. D. dos S. (2019). On the limit cycle of a Belousov-Zabotinsky differential systems. São Carlos: ICMC-USP. Recuperado de http://repositorio.icmc.usp.br//handle/RIICMC/6874
    • NLM

      Llibre J, Oliveira RD dos S. On the limit cycle of a Belousov-Zabotinsky differential systems [Internet]. 2019 ;[citado 2026 fev. 13 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6874
    • Vancouver

      Llibre J, Oliveira RD dos S. On the limit cycle of a Belousov-Zabotinsky differential systems [Internet]. 2019 ;[citado 2026 fev. 13 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6874
  • Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, INVARIANTES

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e VALLS, Claudia. Global dynamics of the May-Leonard system with a Darboux invariant. . São Carlos: ICMC-USP. Disponível em: http://repositorio.icmc.usp.br//handle/RIICMC/6875. Acesso em: 13 fev. 2026. , 2019
    • APA

      Oliveira, R. D. dos S., & Valls, C. (2019). Global dynamics of the May-Leonard system with a Darboux invariant. São Carlos: ICMC-USP. Recuperado de http://repositorio.icmc.usp.br//handle/RIICMC/6875
    • NLM

      Oliveira RD dos S, Valls C. Global dynamics of the May-Leonard system with a Darboux invariant [Internet]. 2019 ;[citado 2026 fev. 13 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6875
    • Vancouver

      Oliveira RD dos S, Valls C. Global dynamics of the May-Leonard system with a Darboux invariant [Internet]. 2019 ;[citado 2026 fev. 13 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6875

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026