Filtros : "Piecewise smooth vector fields" Limpar

Filtros



Refine with date range


  • Source: Nonlinear Analysis: Real World Applications. Unidade: FFCLRP

    Subjects: HIV, SÍNDROMES DE DEFICIÊNCIA IMUNOLÓGICA, MEDICAMENTO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de et al. Dynamics of an intermittent HIV treatment using piecewise smooth vector fields with two switching manifolds. Nonlinear Analysis: Real World Applications, v. 82, p. 1-6, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.nonrwa.2024.104256. Acesso em: 21 jan. 2026.
    • APA

      Carvalho, T. de, Cunha, J., Euzébio, R., & Florentino, M. (2025). Dynamics of an intermittent HIV treatment using piecewise smooth vector fields with two switching manifolds. Nonlinear Analysis: Real World Applications, 82, 1-6. doi:10.1016/j.nonrwa.2024.104256
    • NLM

      Carvalho T de, Cunha J, Euzébio R, Florentino M. Dynamics of an intermittent HIV treatment using piecewise smooth vector fields with two switching manifolds [Internet]. Nonlinear Analysis: Real World Applications. 2025 ; 82 1-6.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1016/j.nonrwa.2024.104256
    • Vancouver

      Carvalho T de, Cunha J, Euzébio R, Florentino M. Dynamics of an intermittent HIV treatment using piecewise smooth vector fields with two switching manifolds [Internet]. Nonlinear Analysis: Real World Applications. 2025 ; 82 1-6.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1016/j.nonrwa.2024.104256
  • Source: Journal of Dynamical and Control Systems. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREZ, Otavio Henrique e RONDÓN, Gabriel e SILVA, Paulo Ricardo da. Slow-fast normal forms arising from piecewise smooth vector fields. Journal of Dynamical and Control Systems, v. 29, p. 1709-1726, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10883-023-09657-x. Acesso em: 21 jan. 2026.
    • APA

      Perez, O. H., Rondón, G., & Silva, P. R. da. (2023). Slow-fast normal forms arising from piecewise smooth vector fields. Journal of Dynamical and Control Systems, 29, 1709-1726. doi:10.1007/s10883-023-09657-x
    • NLM

      Perez OH, Rondón G, Silva PR da. Slow-fast normal forms arising from piecewise smooth vector fields [Internet]. Journal of Dynamical and Control Systems. 2023 ; 29 1709-1726.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s10883-023-09657-x
    • Vancouver

      Perez OH, Rondón G, Silva PR da. Slow-fast normal forms arising from piecewise smooth vector fields [Internet]. Journal of Dynamical and Control Systems. 2023 ; 29 1709-1726.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s10883-023-09657-x
  • Source: Journal of Dynamical and Control Systems. Unidade: FFCLRP

    Subjects: NEOPLASIAS PROSTÁTICAS, VETORES, SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de et al. Global analysis of the dynamics of a piecewise linear vector field model for prostate cancer treatment. Journal of Dynamical and Control Systems, v. 28, n. 2, p. 375-398, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10883-021-09576-9. Acesso em: 21 jan. 2026.
    • APA

      Carvalho, T. de, Cristiano, R., Rodrigues, D. S., & Tonon, D. J. (2022). Global analysis of the dynamics of a piecewise linear vector field model for prostate cancer treatment. Journal of Dynamical and Control Systems, 28( 2), 375-398. doi:10.1007/s10883-021-09576-9
    • NLM

      Carvalho T de, Cristiano R, Rodrigues DS, Tonon DJ. Global analysis of the dynamics of a piecewise linear vector field model for prostate cancer treatment [Internet]. Journal of Dynamical and Control Systems. 2022 ; 28( 2): 375-398.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s10883-021-09576-9
    • Vancouver

      Carvalho T de, Cristiano R, Rodrigues DS, Tonon DJ. Global analysis of the dynamics of a piecewise linear vector field model for prostate cancer treatment [Internet]. Journal of Dynamical and Control Systems. 2022 ; 28( 2): 375-398.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s10883-021-09576-9
  • Source: International Journal of Bifurcation and Chaos. Unidade: FFCLRP

    Subjects: SISTEMAS DIFERENCIAIS, POLINÔMIOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de e GONÇALVES, Luiz Fernando e LLIBRE, Jaume. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials. International Journal of Bifurcation and Chaos, v. 32, n. 16, 2022Tradução . . Disponível em: https://doi.org/10.1142/S0218127422502455. Acesso em: 21 jan. 2026.
    • APA

      Carvalho, T. de, Gonçalves, L. F., & Llibre, J. (2022). On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials. International Journal of Bifurcation and Chaos, 32( 16). doi:10.1142/S0218127422502455
    • NLM

      Carvalho T de, Gonçalves LF, Llibre J. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 16):[citado 2026 jan. 21 ] Available from: https://doi.org/10.1142/S0218127422502455
    • Vancouver

      Carvalho T de, Gonçalves LF, Llibre J. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 16):[citado 2026 jan. 21 ] Available from: https://doi.org/10.1142/S0218127422502455
  • Source: Nonlinear Dynamics. Unidade: FFCLRP

    Subjects: VETORES, TEORIA DA BIFURCAÇÃO, COVID-19, MODELOS EPIDEMIOLOGICOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de et al. Global analysis of a piecewise smooth epidemiological model of COVID-19. Nonlinear Dynamics, v. 105, n. 4, p. 3763-3773, 2021Tradução . . Disponível em: https://doi.org/10.1007/s11071-021-06801-9. Acesso em: 21 jan. 2026.
    • APA

      Carvalho, T. de, Cristiano, R., Rodrigues, D. S., & Tonon, D. J. (2021). Global analysis of a piecewise smooth epidemiological model of COVID-19. Nonlinear Dynamics, 105( 4), 3763-3773. doi:10.1007/s11071-021-06801-9
    • NLM

      Carvalho T de, Cristiano R, Rodrigues DS, Tonon DJ. Global analysis of a piecewise smooth epidemiological model of COVID-19 [Internet]. Nonlinear Dynamics. 2021 ; 105( 4): 3763-3773.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s11071-021-06801-9
    • Vancouver

      Carvalho T de, Cristiano R, Rodrigues DS, Tonon DJ. Global analysis of a piecewise smooth epidemiological model of COVID-19 [Internet]. Nonlinear Dynamics. 2021 ; 105( 4): 3763-3773.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s11071-021-06801-9
  • Source: International Journal of Bifurcation and Chaos. Unidade: FFCLRP

    Subjects: MATEMÁTICA, SOLUÇÕES PERIÓDICAS, CÁLCULO VETORIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de e FREITAS, Bruno Rodrigues de. Birth of isolated nested cylinders and limit cycles in 3d piecewise smooth vector fields with symmetry. International Journal of Bifurcation and Chaos, v. 30, n. 7, 2020Tradução . . Disponível em: https://doi.org/10.1142/S0218127420500984. Acesso em: 21 jan. 2026.
    • APA

      Carvalho, T. de, & Freitas, B. R. de. (2020). Birth of isolated nested cylinders and limit cycles in 3d piecewise smooth vector fields with symmetry. International Journal of Bifurcation and Chaos, 30( 7). doi:10.1142/S0218127420500984
    • NLM

      Carvalho T de, Freitas BR de. Birth of isolated nested cylinders and limit cycles in 3d piecewise smooth vector fields with symmetry [Internet]. International Journal of Bifurcation and Chaos. 2020 ; 30( 7):[citado 2026 jan. 21 ] Available from: https://doi.org/10.1142/S0218127420500984
    • Vancouver

      Carvalho T de, Freitas BR de. Birth of isolated nested cylinders and limit cycles in 3d piecewise smooth vector fields with symmetry [Internet]. International Journal of Bifurcation and Chaos. 2020 ; 30( 7):[citado 2026 jan. 21 ] Available from: https://doi.org/10.1142/S0218127420500984
  • Source: Nonlinear Dynamics. Unidade: FFCLRP

    Subjects: CAOS (SISTEMAS DINÂMICOS), SISTEMAS DIFERENCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de e NOVAES, Douglas Duarte e GONÇALVES, Luiz Fernando. Sliding Shilnikov connection in Filippov-type predator–prey model. Nonlinear Dynamics, v. 100, n. 3, p. 2973-2987, 2020Tradução . . Disponível em: https://doi.org/10.1007/s11071-020-05672-w. Acesso em: 21 jan. 2026.
    • APA

      Carvalho, T. de, Novaes, D. D., & Gonçalves, L. F. (2020). Sliding Shilnikov connection in Filippov-type predator–prey model. Nonlinear Dynamics, 100( 3), 2973-2987. doi:10.1007/s11071-020-05672-w
    • NLM

      Carvalho T de, Novaes DD, Gonçalves LF. Sliding Shilnikov connection in Filippov-type predator–prey model [Internet]. Nonlinear Dynamics. 2020 ; 100( 3): 2973-2987.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s11071-020-05672-w
    • Vancouver

      Carvalho T de, Novaes DD, Gonçalves LF. Sliding Shilnikov connection in Filippov-type predator–prey model [Internet]. Nonlinear Dynamics. 2020 ; 100( 3): 2973-2987.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s11071-020-05672-w
  • Source: Applied Mathematics and Computation. Unidade: FFCLRP

    Subjects: MODELOS MATEMÁTICOS, NEOPLASIAS, ONCOLOGIA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, MATEMÁTICA APLICADA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Diego S. et al. Sliding mode control in a mathematical model to chemoimmunotherapy: the occurrence of typical singularities. Applied Mathematics and Computation, v. 387, p. 1-19, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.amc.2019.124782. Acesso em: 21 jan. 2026.
    • APA

      Rodrigues, D. S., Mancera, P. F. A., Carvalho, T. de, & Gonçalves, L. F. (2020). Sliding mode control in a mathematical model to chemoimmunotherapy: the occurrence of typical singularities. Applied Mathematics and Computation, 387, 1-19. doi:10.1016/j.amc.2019.124782
    • NLM

      Rodrigues DS, Mancera PFA, Carvalho T de, Gonçalves LF. Sliding mode control in a mathematical model to chemoimmunotherapy: the occurrence of typical singularities [Internet]. Applied Mathematics and Computation. 2020 ; 387 1-19.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1016/j.amc.2019.124782
    • Vancouver

      Rodrigues DS, Mancera PFA, Carvalho T de, Gonçalves LF. Sliding mode control in a mathematical model to chemoimmunotherapy: the occurrence of typical singularities [Internet]. Applied Mathematics and Computation. 2020 ; 387 1-19.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1016/j.amc.2019.124782
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: FFCLRP

    Subjects: MATEMÁTICA, SISTEMAS DINÂMICOS, SISTEMAS DESORDENADOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de e EUZÉBIO, Rodrigo Donizete. Minimal sets and chaos in planar piecewise smooth vector fields. Electronic Journal of Qualitative Theory of Differential Equations, n. 33, p. 1-15, 2020Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2020.1.33. Acesso em: 21 jan. 2026.
    • APA

      Carvalho, T. de, & Euzébio, R. D. (2020). Minimal sets and chaos in planar piecewise smooth vector fields. Electronic Journal of Qualitative Theory of Differential Equations, ( 33), 1-15. doi:10.14232/ejqtde.2020.1.33
    • NLM

      Carvalho T de, Euzébio RD. Minimal sets and chaos in planar piecewise smooth vector fields [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2020 ;( 33): 1-15.[citado 2026 jan. 21 ] Available from: https://doi.org/10.14232/ejqtde.2020.1.33
    • Vancouver

      Carvalho T de, Euzébio RD. Minimal sets and chaos in planar piecewise smooth vector fields [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2020 ;( 33): 1-15.[citado 2026 jan. 21 ] Available from: https://doi.org/10.14232/ejqtde.2020.1.33
  • Source: Journal of Dynamics and Differential Equations. Unidade: FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS DA FÍSICA, SISTEMAS DINÂMICOS (FÍSICA MATEMÁTICA)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de e CARDOSO, João Lopes e TONON, Durval José. Canonical forms for codimension one planar piecewise smooth vector fields with sliding region. Journal of Dynamics and Differential Equations, v. 30, n. 4, p. 1899-1920, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10884-017-9636-9. Acesso em: 21 jan. 2026.
    • APA

      Carvalho, T. de, Cardoso, J. L., & Tonon, D. J. (2018). Canonical forms for codimension one planar piecewise smooth vector fields with sliding region. Journal of Dynamics and Differential Equations, 30( 4), 1899-1920. doi:10.1007/s10884-017-9636-9
    • NLM

      Carvalho T de, Cardoso JL, Tonon DJ. Canonical forms for codimension one planar piecewise smooth vector fields with sliding region [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 4): 1899-1920.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s10884-017-9636-9
    • Vancouver

      Carvalho T de, Cardoso JL, Tonon DJ. Canonical forms for codimension one planar piecewise smooth vector fields with sliding region [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 4): 1899-1920.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s10884-017-9636-9

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026