Filtros : "Nanocellulose" Limpar

Filtros



Refine with date range


  • Source: International Journal of Biological Macromolecules. Unidades: IQSC, FZEA

    Subjects: CELULOSE, AEROSSOL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Rachel Passos de Oliveira et al. Composite electrospun membranes from cellulose nanocrystals, castor oil, and poly(ethylene terephthalate): Air permeability, thermal stability, and other relevant properties. International Journal of Biological Macromolecules, v. 287, p. 138437, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.ijbiomac.2024.138437. Acesso em: 10 fev. 2026.
    • APA

      Santos, R. P. de O., Ferracini, T. V., Innocentini, M. D. de M., Frollini, E., & Savastano Júnior, H. (2025). Composite electrospun membranes from cellulose nanocrystals, castor oil, and poly(ethylene terephthalate): Air permeability, thermal stability, and other relevant properties. International Journal of Biological Macromolecules, 287, 138437. doi:10.1016/j.ijbiomac.2024.138437
    • NLM

      Santos RP de O, Ferracini TV, Innocentini MD de M, Frollini E, Savastano Júnior H. Composite electrospun membranes from cellulose nanocrystals, castor oil, and poly(ethylene terephthalate): Air permeability, thermal stability, and other relevant properties [Internet]. International Journal of Biological Macromolecules. 2025 ;287 138437.[citado 2026 fev. 10 ] Available from: https://doi.org/10.1016/j.ijbiomac.2024.138437
    • Vancouver

      Santos RP de O, Ferracini TV, Innocentini MD de M, Frollini E, Savastano Júnior H. Composite electrospun membranes from cellulose nanocrystals, castor oil, and poly(ethylene terephthalate): Air permeability, thermal stability, and other relevant properties [Internet]. International Journal of Biological Macromolecules. 2025 ;287 138437.[citado 2026 fev. 10 ] Available from: https://doi.org/10.1016/j.ijbiomac.2024.138437
    ODS 03. Saúde e bem-estarODS 06. Água potável e saneamentoODS 07. Energia limpa e acessívelODS 11. Cidades e comunidades sustentáveis
  • Source: Industrial Crops and Products. Unidades: EEL, IFSC

    Subjects: MATERIAIS NANOESTRUTURADOS, ESPECTROSCOPIA INFRAVERMELHA, CELULOSE, FONTES RENOVÁVEIS DE ENERGIA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MATHIAS, Samir Leite et al. Amazonian Surucucumirá fiber: from native tree to a possible sustainable nano-reinforcement. Industrial Crops and Products, v. 225, p. 120454-1120454-6 + supplementary material, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.indcrop.2024.120454. Acesso em: 10 fev. 2026.
    • APA

      Mathias, S. L., Lima, V. H. de, Dias, I. K. R., Arantes, V., Silva, M. de A. P. da, Lucas, A. de A., & Menezes, A. J. de. (2025). Amazonian Surucucumirá fiber: from native tree to a possible sustainable nano-reinforcement. Industrial Crops and Products, 225, 120454-1120454-6 + supplementary material. doi:10.1016/j.indcrop.2024.120454
    • NLM

      Mathias SL, Lima VH de, Dias IKR, Arantes V, Silva M de AP da, Lucas A de A, Menezes AJ de. Amazonian Surucucumirá fiber: from native tree to a possible sustainable nano-reinforcement [Internet]. Industrial Crops and Products. 2025 ; 225 120454-1120454-6 + supplementary material.[citado 2026 fev. 10 ] Available from: https://doi.org/10.1016/j.indcrop.2024.120454
    • Vancouver

      Mathias SL, Lima VH de, Dias IKR, Arantes V, Silva M de AP da, Lucas A de A, Menezes AJ de. Amazonian Surucucumirá fiber: from native tree to a possible sustainable nano-reinforcement [Internet]. Industrial Crops and Products. 2025 ; 225 120454-1120454-6 + supplementary material.[citado 2026 fev. 10 ] Available from: https://doi.org/10.1016/j.indcrop.2024.120454
  • Unidade: FZEA

    Subjects: GELATINA, PECTINA, QUITOSANA, NANOCOMPOSITOS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VELÁSQUEZ CASTILLO, Lía Ethel. Hidrogéis e filmes a base de biopolímeros naturais contendo nanofibras de celulose de palha de soja: propriedades físicas dos materiais e reológicas das dispersões biopoliméricas. 2024. Tese (Doutorado) – Universidade de São Paulo, Pirassununga, 2024. Disponível em: https://www.teses.usp.br/teses/disponiveis/74/74132/tde-01042025-113210/. Acesso em: 10 fev. 2026.
    • APA

      Velásquez Castillo, L. E. (2024). Hidrogéis e filmes a base de biopolímeros naturais contendo nanofibras de celulose de palha de soja: propriedades físicas dos materiais e reológicas das dispersões biopoliméricas (Tese (Doutorado). Universidade de São Paulo, Pirassununga. Recuperado de https://www.teses.usp.br/teses/disponiveis/74/74132/tde-01042025-113210/
    • NLM

      Velásquez Castillo LE. Hidrogéis e filmes a base de biopolímeros naturais contendo nanofibras de celulose de palha de soja: propriedades físicas dos materiais e reológicas das dispersões biopoliméricas [Internet]. 2024 ;[citado 2026 fev. 10 ] Available from: https://www.teses.usp.br/teses/disponiveis/74/74132/tde-01042025-113210/
    • Vancouver

      Velásquez Castillo LE. Hidrogéis e filmes a base de biopolímeros naturais contendo nanofibras de celulose de palha de soja: propriedades físicas dos materiais e reológicas das dispersões biopoliméricas [Internet]. 2024 ;[citado 2026 fev. 10 ] Available from: https://www.teses.usp.br/teses/disponiveis/74/74132/tde-01042025-113210/
  • Source: Journal of Sol-Gel Science and Technology. Unidades: IQSC, EESC

    Subjects: SECAGEM, FOTOCATÁLISE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARCHIORI, Leonardo et al. Effect of drying methods on the structure and properties of bacterial nanocellulose/MoS2 hybrid gel membranes and sphere-like particles for enhanced adsorption and photocatalytic applications. Journal of Sol-Gel Science and Technology, v. 110, p. 635-653, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10971-024-06380-2. Acesso em: 10 fev. 2026.
    • APA

      Marchiori, L., Santos, L. S., Schuler, T., Bernardes, J. C., Mattos, B. O., Onishi, B. S. D., et al. (2024). Effect of drying methods on the structure and properties of bacterial nanocellulose/MoS2 hybrid gel membranes and sphere-like particles for enhanced adsorption and photocatalytic applications. Journal of Sol-Gel Science and Technology, 110, 635-653. doi:10.1007/s10971-024-06380-2
    • NLM

      Marchiori L, Santos LS, Schuler T, Bernardes JC, Mattos BO, Onishi BSD, Bortoletto-Santos R, Rodrigues Filho UP, Domeneguetti RR, Ullah S, Rambo CRR, Ferreira Neto EP, Ribeiro SJL. Effect of drying methods on the structure and properties of bacterial nanocellulose/MoS2 hybrid gel membranes and sphere-like particles for enhanced adsorption and photocatalytic applications [Internet]. Journal of Sol-Gel Science and Technology. 2024 ; 110 635-653.[citado 2026 fev. 10 ] Available from: https://doi.org/10.1007/s10971-024-06380-2
    • Vancouver

      Marchiori L, Santos LS, Schuler T, Bernardes JC, Mattos BO, Onishi BSD, Bortoletto-Santos R, Rodrigues Filho UP, Domeneguetti RR, Ullah S, Rambo CRR, Ferreira Neto EP, Ribeiro SJL. Effect of drying methods on the structure and properties of bacterial nanocellulose/MoS2 hybrid gel membranes and sphere-like particles for enhanced adsorption and photocatalytic applications [Internet]. Journal of Sol-Gel Science and Technology. 2024 ; 110 635-653.[citado 2026 fev. 10 ] Available from: https://doi.org/10.1007/s10971-024-06380-2
  • Source: International journal of biological macromolecules. Unidade: EEL

    Subjects: BIOQUÍMICA, BIOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHAVES, Bruno Las Casas et al. The emergence of hybrid cellulose nanomaterials as promising biomaterials. International journal of biological macromolecules, v. 250, p. 1-27, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.ijbiomac.2023.126007. Acesso em: 10 fev. 2026.
    • APA

      Chaves, B. L. C., Dias, I. K. R., Mendoza, S. L. Y., Pereira, B., Costa, G. R., Rojas, O. J., & Arantes, V. (2023). The emergence of hybrid cellulose nanomaterials as promising biomaterials. International journal of biological macromolecules, 250, 1-27. doi:10.1016/j.ijbiomac.2023.126007
    • NLM

      Chaves BLC, Dias IKR, Mendoza SLY, Pereira B, Costa GR, Rojas OJ, Arantes V. The emergence of hybrid cellulose nanomaterials as promising biomaterials [Internet]. International journal of biological macromolecules. 2023 ;250 1-27.[citado 2026 fev. 10 ] Available from: https://doi.org/10.1016/j.ijbiomac.2023.126007
    • Vancouver

      Chaves BLC, Dias IKR, Mendoza SLY, Pereira B, Costa GR, Rojas OJ, Arantes V. The emergence of hybrid cellulose nanomaterials as promising biomaterials [Internet]. International journal of biological macromolecules. 2023 ;250 1-27.[citado 2026 fev. 10 ] Available from: https://doi.org/10.1016/j.ijbiomac.2023.126007
  • Source: Cellulose. Unidades: IFSC, IQSC

    Subjects: HIDRÓLISE, CANA-DE-AÇÚCAR, BAGAÇOS, CELULOSE, SULFONAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KANE, Aissata Ousmane et al. Enzyme-assisted production of cellulose nanofbers from bleached and bleached/sulfonated sugarcane bagasse: impact of sulfonation on nanocellulose properties and yields. Cellulose, v. 30, n. 18, p. 11507-11520, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10570-023-05600-2. Acesso em: 10 fev. 2026.
    • APA

      Kane, A. O., Scopel, E., Cortez, A. A., Rossi, B. R., Pellegrini, V. de O. A., Rezende, C. A. de, & Polikarpov, I. (2023). Enzyme-assisted production of cellulose nanofbers from bleached and bleached/sulfonated sugarcane bagasse: impact of sulfonation on nanocellulose properties and yields. Cellulose, 30( 18), 11507-11520. doi:10.1007/s10570-023-05600-2
    • NLM

      Kane AO, Scopel E, Cortez AA, Rossi BR, Pellegrini V de OA, Rezende CA de, Polikarpov I. Enzyme-assisted production of cellulose nanofbers from bleached and bleached/sulfonated sugarcane bagasse: impact of sulfonation on nanocellulose properties and yields [Internet]. Cellulose. 2023 ; 30( 18): 11507-11520.[citado 2026 fev. 10 ] Available from: https://doi.org/10.1007/s10570-023-05600-2
    • Vancouver

      Kane AO, Scopel E, Cortez AA, Rossi BR, Pellegrini V de OA, Rezende CA de, Polikarpov I. Enzyme-assisted production of cellulose nanofbers from bleached and bleached/sulfonated sugarcane bagasse: impact of sulfonation on nanocellulose properties and yields [Internet]. Cellulose. 2023 ; 30( 18): 11507-11520.[citado 2026 fev. 10 ] Available from: https://doi.org/10.1007/s10570-023-05600-2
  • Source: International journal of biological macromolecules. Unidade: EEL

    Assunto: BIOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DIAS, Isabella Karoline Ribeiro e SIQUEIRA, Germano Andrade e ARANTES, Valdeir. Xylanase increases the selectivity of the enzymatic hydrolysis with endoglucanase to produce cellulose nanocrystals with improved properties. International journal of biological macromolecules, v. 220, p. 589-600, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.ijbiomac.2022.08.047. Acesso em: 10 fev. 2026.
    • APA

      Dias, I. K. R., Siqueira, G. A., & Arantes, V. (2022). Xylanase increases the selectivity of the enzymatic hydrolysis with endoglucanase to produce cellulose nanocrystals with improved properties. International journal of biological macromolecules, 220, 589-600. doi:10.1016/j.ijbiomac.2022.08.047
    • NLM

      Dias IKR, Siqueira GA, Arantes V. Xylanase increases the selectivity of the enzymatic hydrolysis with endoglucanase to produce cellulose nanocrystals with improved properties [Internet]. International journal of biological macromolecules. 2022 ;220 589-600.[citado 2026 fev. 10 ] Available from: https://doi.org/10.1016/j.ijbiomac.2022.08.047
    • Vancouver

      Dias IKR, Siqueira GA, Arantes V. Xylanase increases the selectivity of the enzymatic hydrolysis with endoglucanase to produce cellulose nanocrystals with improved properties [Internet]. International journal of biological macromolecules. 2022 ;220 589-600.[citado 2026 fev. 10 ] Available from: https://doi.org/10.1016/j.ijbiomac.2022.08.047
  • Source: The Journal of Membrane Science. Unidades: IQSC, FZEA

    Subjects: FÍSICO-QUÍMICA, MATERIAIS COMPÓSITOS, CELULOSE, AEROSSOL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Rachel Passos de Oliveira et al. Aerosol filtration performance of electrospun membranes comprising polyacrylonitrile and cellulose nanocrystals. The Journal of Membrane Science, v. 650, p. 120392, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.memsci.2022.120392. Acesso em: 10 fev. 2026.
    • APA

      Santos, R. P. de O., Hao, J., Frollini, E., Savastano Júnior, H., & Rutledge, G. C. (2022). Aerosol filtration performance of electrospun membranes comprising polyacrylonitrile and cellulose nanocrystals. The Journal of Membrane Science, 650, 120392. doi:10.1016/j.memsci.2022.120392
    • NLM

      Santos RP de O, Hao J, Frollini E, Savastano Júnior H, Rutledge GC. Aerosol filtration performance of electrospun membranes comprising polyacrylonitrile and cellulose nanocrystals [Internet]. The Journal of Membrane Science. 2022 ; 650 120392.[citado 2026 fev. 10 ] Available from: https://doi.org/10.1016/j.memsci.2022.120392
    • Vancouver

      Santos RP de O, Hao J, Frollini E, Savastano Júnior H, Rutledge GC. Aerosol filtration performance of electrospun membranes comprising polyacrylonitrile and cellulose nanocrystals [Internet]. The Journal of Membrane Science. 2022 ; 650 120392.[citado 2026 fev. 10 ] Available from: https://doi.org/10.1016/j.memsci.2022.120392
  • Source: Carbohydrate Polymer Technologies and Applications. Unidade: FCFRP

    Subjects: PECTINA, FILOLOGIA, POLÍMEROS (QUÍMICA ORGÂNICA)

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZAMBUZI, Giovana C et al. Modulating the controlled release of hydroxychloroquine mobilized on pectin films through film-forming pH and incorporation of nanocellulose. Carbohydrate Polymer Technologies and Applications, v. 2, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.carpta.2021.100140. Acesso em: 10 fev. 2026.
    • APA

      Zambuzi, G. C., Camargos, C. H. M., Ferreira, M. P., Rezende, C. A., Freitas, O. de, & Francisco, K. R. (2021). Modulating the controlled release of hydroxychloroquine mobilized on pectin films through film-forming pH and incorporation of nanocellulose. Carbohydrate Polymer Technologies and Applications, 2. doi:10.1016/j.carpta.2021.100140
    • NLM

      Zambuzi GC, Camargos CHM, Ferreira MP, Rezende CA, Freitas O de, Francisco KR. Modulating the controlled release of hydroxychloroquine mobilized on pectin films through film-forming pH and incorporation of nanocellulose [Internet]. Carbohydrate Polymer Technologies and Applications. 2021 ; 2[citado 2026 fev. 10 ] Available from: https://doi.org/10.1016/j.carpta.2021.100140
    • Vancouver

      Zambuzi GC, Camargos CHM, Ferreira MP, Rezende CA, Freitas O de, Francisco KR. Modulating the controlled release of hydroxychloroquine mobilized on pectin films through film-forming pH and incorporation of nanocellulose [Internet]. Carbohydrate Polymer Technologies and Applications. 2021 ; 2[citado 2026 fev. 10 ] Available from: https://doi.org/10.1016/j.carpta.2021.100140
  • Source: Industrial crops and products. Unidade: EEL

    Subjects: ENZIMAS HIDROLÍTICAS, NANOTECNOLOGIA, BIOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Barbara e ARANTES, Valdeir. Production of cellulose nanocrystals integrated into a biochemical sugar platform process via enzymatic hydrolysis at high solid loading. Industrial crops and products, v. 152, p. 1-11, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.indcrop.2020.112377. Acesso em: 10 fev. 2026.
    • APA

      Pereira, B., & Arantes, V. (2020). Production of cellulose nanocrystals integrated into a biochemical sugar platform process via enzymatic hydrolysis at high solid loading. Industrial crops and products, 152, 1-11. doi:10.1016/j.indcrop.2020.112377
    • NLM

      Pereira B, Arantes V. Production of cellulose nanocrystals integrated into a biochemical sugar platform process via enzymatic hydrolysis at high solid loading [Internet]. Industrial crops and products. 2020 ; 152 1-11.[citado 2026 fev. 10 ] Available from: https://doi.org/10.1016/j.indcrop.2020.112377
    • Vancouver

      Pereira B, Arantes V. Production of cellulose nanocrystals integrated into a biochemical sugar platform process via enzymatic hydrolysis at high solid loading [Internet]. Industrial crops and products. 2020 ; 152 1-11.[citado 2026 fev. 10 ] Available from: https://doi.org/10.1016/j.indcrop.2020.112377
  • Source: Handbook of food nanotechnology: applications and approaches. Unidades: FZEA, FFCLRP

    Subjects: NANOCOMPOSITOS, NANOTECNOLOGIA, EMBALAGENS DE ALIMENTOS, PLÁSTICOS BIODEGRADÁVEIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTELLI-TOSI, Milena et al. Reinforced nanocomposites for food packaging. Handbook of food nanotechnology: applications and approaches. Tradução . London: Academic Press, 2020. . Disponível em: https://doi.org/10.1016/B978-0-12-815866-1.00014-5. Acesso em: 10 fev. 2026.
    • APA

      Martelli-Tosi, M., Esposto, B. S., Silva, N. C. da, Tapia-Blacido, D. R., & Jafari, S. M. (2020). Reinforced nanocomposites for food packaging. In Handbook of food nanotechnology: applications and approaches. London: Academic Press. doi:10.1016/B978-0-12-815866-1.00014-5
    • NLM

      Martelli-Tosi M, Esposto BS, Silva NC da, Tapia-Blacido DR, Jafari SM. Reinforced nanocomposites for food packaging [Internet]. In: Handbook of food nanotechnology: applications and approaches. London: Academic Press; 2020. [citado 2026 fev. 10 ] Available from: https://doi.org/10.1016/B978-0-12-815866-1.00014-5
    • Vancouver

      Martelli-Tosi M, Esposto BS, Silva NC da, Tapia-Blacido DR, Jafari SM. Reinforced nanocomposites for food packaging [Internet]. In: Handbook of food nanotechnology: applications and approaches. London: Academic Press; 2020. [citado 2026 fev. 10 ] Available from: https://doi.org/10.1016/B978-0-12-815866-1.00014-5
  • Source: Molecules. Unidade: FFCLRP

    Subjects: NANOPARTÍCULAS, BIOMASSA, REFINARIAS, SUSTENTABILIDADE, CELULOSE

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MICHELIN, Michel et al. Nanocellulose production: exploring the enzymatic route and residues of pulp and paper industry. Molecules, v. 25, n. 15, p. 1-36, 2020Tradução . . Disponível em: https://doi.org/10.3390/molecules25153411. Acesso em: 10 fev. 2026.
    • APA

      Michelin, M., Gomes, D. G., Romaní, A., Polizeli, M. de L. T. de M., & Teixeira, J. A. (2020). Nanocellulose production: exploring the enzymatic route and residues of pulp and paper industry. Molecules, 25( 15), 1-36. doi:10.3390/molecules25153411
    • NLM

      Michelin M, Gomes DG, Romaní A, Polizeli M de LT de M, Teixeira JA. Nanocellulose production: exploring the enzymatic route and residues of pulp and paper industry [Internet]. Molecules. 2020 ; 25( 15): 1-36.[citado 2026 fev. 10 ] Available from: https://doi.org/10.3390/molecules25153411
    • Vancouver

      Michelin M, Gomes DG, Romaní A, Polizeli M de LT de M, Teixeira JA. Nanocellulose production: exploring the enzymatic route and residues of pulp and paper industry [Internet]. Molecules. 2020 ; 25( 15): 1-36.[citado 2026 fev. 10 ] Available from: https://doi.org/10.3390/molecules25153411
  • Source: Carbohydrate polymers. Unidade: EEL

    Assunto: BIOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENINI, Kelly Cristina Coelho de Carvalho et al. Preparation of nanocellulose from Imperata brasiliensis grass using Taguchi method. Carbohydrate polymers, v. 192, p. 337-346, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.carbpol.2018.03.055. Acesso em: 10 fev. 2026.
    • APA

      Benini, K. C. C. de C., Voorwald, H. J. C., Cioffi, M. O. H., Rezende, M. C., & Arantes, V. (2018). Preparation of nanocellulose from Imperata brasiliensis grass using Taguchi method. Carbohydrate polymers, 192, 337-346. doi:10.1016/j.carbpol.2018.03.055
    • NLM

      Benini KCC de C, Voorwald HJC, Cioffi MOH, Rezende MC, Arantes V. Preparation of nanocellulose from Imperata brasiliensis grass using Taguchi method [Internet]. Carbohydrate polymers. 2018 ; 192 337-346.[citado 2026 fev. 10 ] Available from: https://doi.org/10.1016/j.carbpol.2018.03.055
    • Vancouver

      Benini KCC de C, Voorwald HJC, Cioffi MOH, Rezende MC, Arantes V. Preparation of nanocellulose from Imperata brasiliensis grass using Taguchi method [Internet]. Carbohydrate polymers. 2018 ; 192 337-346.[citado 2026 fev. 10 ] Available from: https://doi.org/10.1016/j.carbpol.2018.03.055

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026