Filtros : "Gegenbauer polynomials" Limpar

Filtros



Refine with date range


  • Unidade: ICMC

    Subjects: ANÁLISE HARMÔNICA, APROXIMAÇÃO, APROXIMAÇÃO DE FUNÇÕES, POLINÔMIOS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIDRAL FILHO, Edson. Uma extensão do teorema de Schoenberg. 2024. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2024. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-08012025-120541/. Acesso em: 29 jan. 2026.
    • APA

      Cidral Filho, E. (2024). Uma extensão do teorema de Schoenberg (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-08012025-120541/
    • NLM

      Cidral Filho E. Uma extensão do teorema de Schoenberg [Internet]. 2024 ;[citado 2026 jan. 29 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-08012025-120541/
    • Vancouver

      Cidral Filho E. Uma extensão do teorema de Schoenberg [Internet]. 2024 ;[citado 2026 jan. 29 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-08012025-120541/
  • Unidade: ICMC

    Subjects: OPERADORES INTEGRAIS, OPERADORES DIFERENCIAIS, ESPAÇOS DE HILBERT, POLINÔMIOS DE LEGENDRE (SÉRIES), GEOESTATÍSTICA, FUNÇÕES HARMÔNICAS, POLINÔMIOS ORTOGONAIS, POLINÔMIOS DE CHEBYCHEV

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PALOMINO, Jose Raphael Choquehuanca. Harmônicos esféricos e funções definidas positivas. 2022. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2022. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-02052022-171657/. Acesso em: 29 jan. 2026.
    • APA

      Palomino, J. R. C. (2022). Harmônicos esféricos e funções definidas positivas (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-02052022-171657/
    • NLM

      Palomino JRC. Harmônicos esféricos e funções definidas positivas [Internet]. 2022 ;[citado 2026 jan. 29 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-02052022-171657/
    • Vancouver

      Palomino JRC. Harmônicos esféricos e funções definidas positivas [Internet]. 2022 ;[citado 2026 jan. 29 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-02052022-171657/
  • Source: Journal of Approximation Theory. Unidade: ICMC

    Subjects: ANÁLISE HARMÔNICA, FUNÇÕES HIPERGEOMÉTRICAS, POLINÔMIOS ORTOGONAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERG, Christian e PERON, Ana Paula e PORCU, Emilio. Schoenberg's theorem for real and complex Hilbert spheres revisited. Journal of Approximation Theory, v. 228, p. 58-78, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jat.2018.02.003. Acesso em: 29 jan. 2026.
    • APA

      Berg, C., Peron, A. P., & Porcu, E. (2018). Schoenberg's theorem for real and complex Hilbert spheres revisited. Journal of Approximation Theory, 228, 58-78. doi:10.1016/j.jat.2018.02.003
    • NLM

      Berg C, Peron AP, Porcu E. Schoenberg's theorem for real and complex Hilbert spheres revisited [Internet]. Journal of Approximation Theory. 2018 ; 228 58-78.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1016/j.jat.2018.02.003
    • Vancouver

      Berg C, Peron AP, Porcu E. Schoenberg's theorem for real and complex Hilbert spheres revisited [Internet]. Journal of Approximation Theory. 2018 ; 228 58-78.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1016/j.jat.2018.02.003
  • Source: Banach Journal of Mathematical Analysis. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, FUNÇÕES ESPECIAIS, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, J. C e MENEGATTO, Valdir Antônio e PERON, Ana Paula. An extension of a theorem of Schoenberg to products of spheres. Banach Journal of Mathematical Analysis, v. 10, n. 4, p. 671-685, 2016Tradução . . Disponível em: https://doi.org/10.1215/17358787-3649260. Acesso em: 29 jan. 2026.
    • APA

      Guella, J. C., Menegatto, V. A., & Peron, A. P. (2016). An extension of a theorem of Schoenberg to products of spheres. Banach Journal of Mathematical Analysis, 10( 4), 671-685. doi:10.1215/17358787-3649260
    • NLM

      Guella JC, Menegatto VA, Peron AP. An extension of a theorem of Schoenberg to products of spheres [Internet]. Banach Journal of Mathematical Analysis. 2016 ; 10( 4): 671-685.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1215/17358787-3649260
    • Vancouver

      Guella JC, Menegatto VA, Peron AP. An extension of a theorem of Schoenberg to products of spheres [Internet]. Banach Journal of Mathematical Analysis. 2016 ; 10( 4): 671-685.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1215/17358787-3649260

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026