Filtros : "Fractional powers" Limpar

Filtros



Refine with date range


  • Source: Applied Mathematics and Optimization. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel e BONOTTO, Everaldo de Mello e NASCIMENTO, Marcelo José Dias. Schur decomposition for unbounded matrix operator connected with fractional powers and semigroup generation. Applied Mathematics and Optimization, v. 92, p. 1-29, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00245-025-10331-w. Acesso em: 29 jan. 2026.
    • APA

      Belluzi, M., Bonotto, E. de M., & Nascimento, M. J. D. (2025). Schur decomposition for unbounded matrix operator connected with fractional powers and semigroup generation. Applied Mathematics and Optimization, 92, 1-29. doi:10.1007/s00245-025-10331-w
    • NLM

      Belluzi M, Bonotto E de M, Nascimento MJD. Schur decomposition for unbounded matrix operator connected with fractional powers and semigroup generation [Internet]. Applied Mathematics and Optimization. 2025 ; 92 1-29.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1007/s00245-025-10331-w
    • Vancouver

      Belluzi M, Bonotto E de M, Nascimento MJD. Schur decomposition for unbounded matrix operator connected with fractional powers and semigroup generation [Internet]. Applied Mathematics and Optimization. 2025 ; 92 1-29.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1007/s00245-025-10331-w
  • Source: Journal of Evolution Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, APROXIMAÇÃO, SEMIGRUPOS DE OPERADORES LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank David Morais e CARVALHO, Alexandre Nolasco de e SANTOS, Lucas Araújo. Well-posedness for some third-order evolution differential equations: a semigroup approach. Journal of Evolution Equations, v. 22, n. 2, p. 1-18, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00028-022-00811-9. Acesso em: 29 jan. 2026.
    • APA

      Bezerra, F. D. M., Carvalho, A. N. de, & Santos, L. A. (2022). Well-posedness for some third-order evolution differential equations: a semigroup approach. Journal of Evolution Equations, 22( 2), 1-18. doi:10.1007/s00028-022-00811-9
    • NLM

      Bezerra FDM, Carvalho AN de, Santos LA. Well-posedness for some third-order evolution differential equations: a semigroup approach [Internet]. Journal of Evolution Equations. 2022 ; 22( 2): 1-18.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1007/s00028-022-00811-9
    • Vancouver

      Bezerra FDM, Carvalho AN de, Santos LA. Well-posedness for some third-order evolution differential equations: a semigroup approach [Internet]. Journal of Evolution Equations. 2022 ; 22( 2): 1-18.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1007/s00028-022-00811-9

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026