Filtros : "Critical exponent" Limpar

Filtros



Refine with date range


  • Source: The Journal of Geometric Analysis. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS NÃO LINEARES, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, João Henrique e WEI, Juncheng e YE, Zikai. Complete metrics with constant fractional higher order q-curvature on the punctured sphere. The Journal of Geometric Analysis, v. 34, n. 6, p. 1-77, 2024Tradução . . Disponível em: https://doi.org/10.1007/s12220-023-01444-1. Acesso em: 25 jan. 2026.
    • APA

      Andrade, J. H., Wei, J., & Ye, Z. (2024). Complete metrics with constant fractional higher order q-curvature on the punctured sphere. The Journal of Geometric Analysis, 34( 6), 1-77. doi:10.1007/s12220-023-01444-1
    • NLM

      Andrade JH, Wei J, Ye Z. Complete metrics with constant fractional higher order q-curvature on the punctured sphere [Internet]. The Journal of Geometric Analysis. 2024 ; 34( 6): 1-77.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s12220-023-01444-1
    • Vancouver

      Andrade JH, Wei J, Ye Z. Complete metrics with constant fractional higher order q-curvature on the punctured sphere [Internet]. The Journal of Geometric Analysis. 2024 ; 34( 6): 1-77.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s12220-023-01444-1
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, João Henrique e DO Ó, João Marcos. Asymptotics for singular solutions to conformally invariant fourth order systems in the punctured ball. Journal of Differential Equations, v. 413, p. 190-239, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.08.029. Acesso em: 25 jan. 2026.
    • APA

      Andrade, J. H., & do Ó, J. M. (2024). Asymptotics for singular solutions to conformally invariant fourth order systems in the punctured ball. Journal of Differential Equations, 413, 190-239. doi:10.1016/j.jde.2024.08.029
    • NLM

      Andrade JH, do Ó JM. Asymptotics for singular solutions to conformally invariant fourth order systems in the punctured ball [Internet]. Journal of Differential Equations. 2024 ; 413 190-239.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1016/j.jde.2024.08.029
    • Vancouver

      Andrade JH, do Ó JM. Asymptotics for singular solutions to conformally invariant fourth order systems in the punctured ball [Internet]. Journal of Differential Equations. 2024 ; 413 190-239.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1016/j.jde.2024.08.029
  • Source: Nonlinear Differential Equations and Applications No DEA. Unidade: FFCLRP

    Subjects: MATEMÁTICA, EQUAÇÕES DE EVOLUÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e MARQUES, Jorge e NASCIMENTO, Wanderley Nunes do. The move from Fujita type exponent to a shift of it for a class of semilinear evolution equations with time-dependent damping. Nonlinear Differential Equations and Applications No DEA, v. 31, n. 23, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00030-023-00909-0. Acesso em: 25 jan. 2026.
    • APA

      Ebert, M. R., Marques, J., & Nascimento, W. N. do. (2024). The move from Fujita type exponent to a shift of it for a class of semilinear evolution equations with time-dependent damping. Nonlinear Differential Equations and Applications No DEA, 31( 23). doi:10.1007/s00030-023-00909-0
    • NLM

      Ebert MR, Marques J, Nascimento WN do. The move from Fujita type exponent to a shift of it for a class of semilinear evolution equations with time-dependent damping [Internet]. Nonlinear Differential Equations and Applications No DEA. 2024 ; 31( 23):[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s00030-023-00909-0
    • Vancouver

      Ebert MR, Marques J, Nascimento WN do. The move from Fujita type exponent to a shift of it for a class of semilinear evolution equations with time-dependent damping [Internet]. Nonlinear Differential Equations and Applications No DEA. 2024 ; 31( 23):[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s00030-023-00909-0
  • Source: Mathematical Methods in the Applied Sciences. Unidade: FFCLRP

    Subjects: MATEMÁTICA, EQUAÇÕES DA ONDA, TORNADOS, ESPAÇOS MÉTRICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e MARQUES, Jorge. Critical exponent of Fujita type for semilinear wave equations in Friedmann–Lemaître–Robertson–Walker spacetime. Mathematical Methods in the Applied Sciences, v. 46, p. 2602-2635, 2023Tradução . . Disponível em: https://doi.org/10.1002/mma.8663. Acesso em: 25 jan. 2026.
    • APA

      Ebert, M. R., & Marques, J. (2023). Critical exponent of Fujita type for semilinear wave equations in Friedmann–Lemaître–Robertson–Walker spacetime. Mathematical Methods in the Applied Sciences, 46, 2602-2635. doi:10.1002/mma.8663
    • NLM

      Ebert MR, Marques J. Critical exponent of Fujita type for semilinear wave equations in Friedmann–Lemaître–Robertson–Walker spacetime [Internet]. Mathematical Methods in the Applied Sciences. 2023 ; 46 2602-2635.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1002/mma.8663
    • Vancouver

      Ebert MR, Marques J. Critical exponent of Fujita type for semilinear wave equations in Friedmann–Lemaître–Robertson–Walker spacetime [Internet]. Mathematical Methods in the Applied Sciences. 2023 ; 46 2602-2635.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1002/mma.8663
  • Source: Nonlinear Analysis. Unidade: FFCLRP

    Subjects: EQUAÇÕES DE EVOLUÇÃO, PROBLEMA DE CAUCHY, MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D’ABBICCO, M. e EBERT, Marcelo Rempel. The critical exponent for semilinear σ-evolution equations with a strong non-effective damping. Nonlinear Analysis, v. 215, p. [26] , 2022Tradução . . Disponível em: https://doi.org/10.1016/j.na.2021.112637. Acesso em: 25 jan. 2026.
    • APA

      D’Abbicco, M., & Ebert, M. R. (2022). The critical exponent for semilinear σ-evolution equations with a strong non-effective damping. Nonlinear Analysis, 215, [26] . doi:10.1016/j.na.2021.112637
    • NLM

      D’Abbicco M, Ebert MR. The critical exponent for semilinear σ-evolution equations with a strong non-effective damping [Internet]. Nonlinear Analysis. 2022 ; 215 [26] .[citado 2026 jan. 25 ] Available from: https://doi.org/10.1016/j.na.2021.112637
    • Vancouver

      D’Abbicco M, Ebert MR. The critical exponent for semilinear σ-evolution equations with a strong non-effective damping [Internet]. Nonlinear Analysis. 2022 ; 215 [26] .[citado 2026 jan. 25 ] Available from: https://doi.org/10.1016/j.na.2021.112637
  • Source: Nonlinear Differential Equations and Applications NoDEA. Unidade: FFCLRP

    Subjects: MATEMÁTICA, OPERADORES, PROBLEMA DE CAUCHY

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e LUZ, Cleverson R. da e PALMA, Maíra F. G. The influence of data regularity in the critical exponent for a class of semilinear evolution equations. Nonlinear Differential Equations and Applications NoDEA, v. 27, n. 5, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00030-020-00644-w. Acesso em: 25 jan. 2026.
    • APA

      Ebert, M. R., Luz, C. R. da, & Palma, M. F. G. (2020). The influence of data regularity in the critical exponent for a class of semilinear evolution equations. Nonlinear Differential Equations and Applications NoDEA, 27( 5). doi:10.1007/s00030-020-00644-w
    • NLM

      Ebert MR, Luz CR da, Palma MFG. The influence of data regularity in the critical exponent for a class of semilinear evolution equations [Internet]. Nonlinear Differential Equations and Applications NoDEA. 2020 ; 27( 5):[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s00030-020-00644-w
    • Vancouver

      Ebert MR, Luz CR da, Palma MFG. The influence of data regularity in the critical exponent for a class of semilinear evolution equations [Internet]. Nonlinear Differential Equations and Applications NoDEA. 2020 ; 27( 5):[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s00030-020-00644-w
  • Source: Nonlinear Analysis. Unidade: FFCLRP

    Subjects: EQUAÇÕES DE EVOLUÇÃO, MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'ABBICCO, M. e EBERT, Marcelo Rempel. A new phenomenon in the critical exponent for structurally damped semi-linear evoluation equations. Nonlinear Analysis, v. 149, p. 1-40, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.na.2016.10.010. Acesso em: 25 jan. 2026.
    • APA

      D'Abbicco, M., & Ebert, M. R. (2017). A new phenomenon in the critical exponent for structurally damped semi-linear evoluation equations. Nonlinear Analysis, 149, 1-40. doi:10.1016/j.na.2016.10.010
    • NLM

      D'Abbicco M, Ebert MR. A new phenomenon in the critical exponent for structurally damped semi-linear evoluation equations [Internet]. Nonlinear Analysis. 2017 ; 149 1-40.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1016/j.na.2016.10.010
    • Vancouver

      D'Abbicco M, Ebert MR. A new phenomenon in the critical exponent for structurally damped semi-linear evoluation equations [Internet]. Nonlinear Analysis. 2017 ; 149 1-40.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1016/j.na.2016.10.010
  • Source: Trends in Mathematics. Unidade: FFCLRP

    Subjects: EQUAÇÕES DA ONDA, EQUAÇÕES DIFERENCIAIS DA FÍSICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'ABBICCO, Marcello e EBERT, Marcelo Rempel e PICON, Tiago Henrique. Global existence of small data solutions to the semilinear fractional wave equation. Trends in Mathematics, p. 465-471, 2017Tradução . . Acesso em: 25 jan. 2026.
    • APA

      D'Abbicco, M., Ebert, M. R., & Picon, T. H. (2017). Global existence of small data solutions to the semilinear fractional wave equation. Trends in Mathematics, 465-471.
    • NLM

      D'Abbicco M, Ebert MR, Picon TH. Global existence of small data solutions to the semilinear fractional wave equation. Trends in Mathematics. 2017 ; 465-471.[citado 2026 jan. 25 ]
    • Vancouver

      D'Abbicco M, Ebert MR, Picon TH. Global existence of small data solutions to the semilinear fractional wave equation. Trends in Mathematics. 2017 ; 465-471.[citado 2026 jan. 25 ]
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DA ONDA, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MA, To Fu e MARÍN-RUBIO, Pedro e CHUÑO, Christian Manuel Surco. Dynamics of wave equations with moving boundary. Journal of Differential Equations, v. 262, n. 5, p. 3317-3342, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2016.11.030. Acesso em: 25 jan. 2026.
    • APA

      Ma, T. F., Marín-Rubio, P., & Chuño, C. M. S. (2017). Dynamics of wave equations with moving boundary. Journal of Differential Equations, 262( 5), 3317-3342. doi:10.1016/j.jde.2016.11.030
    • NLM

      Ma TF, Marín-Rubio P, Chuño CMS. Dynamics of wave equations with moving boundary [Internet]. Journal of Differential Equations. 2017 ; 262( 5): 3317-3342.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1016/j.jde.2016.11.030
    • Vancouver

      Ma TF, Marín-Rubio P, Chuño CMS. Dynamics of wave equations with moving boundary [Internet]. Journal of Differential Equations. 2017 ; 262( 5): 3317-3342.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1016/j.jde.2016.11.030
  • Source: Annali di Matematica Pura ed Applicata. Unidade: FFCLRP

    Subjects: EQUAÇÕES DA ONDA, MATEMÁTICA, MATEMÁTICA APLICADA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e KAPP, R. A. e PICON, Tiago Henrique. L1–Lp estimates for radial solutions of the wave equation and application. Annali di Matematica Pura ed Applicata, v. 195, n. 4, p. 1081-1091, 2016Tradução . . Disponível em: https://doi.org/10.1007/s10231-015-0505-z. Acesso em: 25 jan. 2026.
    • APA

      Ebert, M. R., Kapp, R. A., & Picon, T. H. (2016). L1–Lp estimates for radial solutions of the wave equation and application. Annali di Matematica Pura ed Applicata, 195( 4), 1081-1091. doi:10.1007/s10231-015-0505-z
    • NLM

      Ebert MR, Kapp RA, Picon TH. L1–Lp estimates for radial solutions of the wave equation and application [Internet]. Annali di Matematica Pura ed Applicata. 2016 ; 195( 4): 1081-1091.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s10231-015-0505-z
    • Vancouver

      Ebert MR, Kapp RA, Picon TH. L1–Lp estimates for radial solutions of the wave equation and application [Internet]. Annali di Matematica Pura ed Applicata. 2016 ; 195( 4): 1081-1091.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s10231-015-0505-z

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026